IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i6d10.1007_s11269-022-03272-4.html
   My bibliography  Save this article

Future Changes in Precipitation Over Northern Europe Based on a Multi-model Ensemble from CMIP6: Focus on Tana River Basin

Author

Listed:
  • Sogol Moradian

    (K. N. Toosi University of Technology)

  • Ali Torabi Haghighi

    (University of Oulu)

  • Maryam Asadi

    (K. N. Toosi University of Technology)

  • Seyed Ahmad Mirbagheri

    (K. N. Toosi University of Technology)

Abstract

Accurate climate projections help policymakers mitigate the negative effects of climatic changes and prioritize environmental issues based on scientific evidences. These projections rely heavily on the outputs of GCMs (General Circulation Models), but the large number of GCMs and their different outputs in each region confuses researchers in their selection. In this paper, we analyzed the performance of a CMIP6 (Climate Model Intercomparison Project Phase 6) multi-model ensemble for Pr (precipitation) data over NE (Northern Europe). First of all, we evaluated the overall performance of 12 CMIP6 models from GCMs in 30 years of 1985–2014. Furthermore, future projections were analyzed between 2071 and 2100 using SSP1-2.6 and SSP5-8.5 (Shared Socioeconomic Pathways). Then, simulations were statistically improved using an ensemble method to correct the systematic error of the CMIP6 models and then the capacity of postprocessed data to reproduce historical trends of climate events was investigated. Finally, the possible spatio-temporal changes of future Pr data were explored in Tana River Basin. The results of this study show that different CMIP6 models do not have the same accuracy in estimating Pr in the study area. However, the ensemble method can be effective in increasing the accuracy of the projections. The results of this study projected a change in the monthly Pr data over Tana River Basin by 2.46% and 2.06% from 2071 to 2100 compared to the historical period, based on SSP1-2.6 and SSP5-8.5, respectively.

Suggested Citation

  • Sogol Moradian & Ali Torabi Haghighi & Maryam Asadi & Seyed Ahmad Mirbagheri, 2023. "Future Changes in Precipitation Over Northern Europe Based on a Multi-model Ensemble from CMIP6: Focus on Tana River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2447-2463, May.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:6:d:10.1007_s11269-022-03272-4
    DOI: 10.1007/s11269-022-03272-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03272-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03272-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarah C. Elmendorf & Gregory H. R. Henry & Robert D. Hollister & Robert G. Björk & Noémie Boulanger-Lapointe & Elisabeth J. Cooper & Johannes H. C. Cornelissen & Thomas A. Day & Ellen Dorrepaal & Tati, 2012. "Plot-scale evidence of tundra vegetation change and links to recent summer warming," Nature Climate Change, Nature, vol. 2(6), pages 453-457, June.
    2. A. Kay & H. Davies & V. Bell & R. Jones, 2009. "Comparison of uncertainty sources for climate change impacts: flood frequency in England," Climatic Change, Springer, vol. 92(1), pages 41-63, January.
    3. Sogol Moradian & Farhad Yazdandoost, 2021. "Seasonal meteorological drought projections over Iran using the NMME data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1089-1107, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanlan Liu & William J. Riley & Trevor F. Keenan & Zelalem A. Mekonnen & Jennifer A. Holm & Qing Zhu & Margaret S. Torn, 2022. "Dispersal and fire limit Arctic shrub expansion," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Nima Fayaz & Laura E. Condon & David G. Chandler, 2020. "Evaluating the Sensitivity of Projected Reservoir Reliability to the Choice of Climate Projection: A Case Study of Bull Run Watershed, Portland, Oregon," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1991-2009, April.
    3. Jacqueline Oehri & Gabriela Schaepman-Strub & Jin-Soo Kim & Raleigh Grysko & Heather Kropp & Inge Grünberg & Vitalii Zemlianskii & Oliver Sonnentag & Eugénie S. Euskirchen & Merin Reji Chacko & Giovan, 2022. "Vegetation type is an important predictor of the arctic summer land surface energy budget," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Indira Pokhrel & Ajay Kalra & Md Mafuzur Rahaman & Ranjeet Thakali, 2020. "Forecasting of Future Flooding and Risk Assessment under CMIP6 Climate Projection in Neuse River, North Carolina," Forecasting, MDPI, vol. 2(3), pages 1-23, August.
    5. Carolina Natel Moura & Sílvio Luís Rafaeli Neto & Claudia Guimarães Camargo Campos & Eder Alexandre Schatz Sá, 2020. "Hydrological Impacts of Climate Change in a Well-preserved Upland Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2255-2267, June.
    6. Yi Yang & Jianping Tang, 2023. "Downscaling and uncertainty analysis of future concurrent long-duration dry and hot events in China," Climatic Change, Springer, vol. 176(2), pages 1-25, February.
    7. Alison Kay, 2022. "Differences in hydrological impacts using regional climate model and nested convection-permitting model data," Climatic Change, Springer, vol. 173(1), pages 1-19, July.
    8. S. Camici & L. Brocca & T. Moramarco, 2017. "Accuracy versus variability of climate projections for flood assessment in central Italy," Climatic Change, Springer, vol. 141(2), pages 273-286, March.
    9. Shirin Karimi & Bahman Jabbarian Amiri & Arash Malekian, 2019. "Similarity Metrics-Based Uncertainty Analysis of River Water Quality Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1927-1945, April.
    10. Eun-Sung Chung & Kwangjae Won & Yeonjoo Kim & Hosun Lee, 2014. "Water Resource Vulnerability Characteristics by District’s Population Size in a Changing Climate Using Subjective and Objective Weights," Sustainability, MDPI, vol. 6(9), pages 1-17, September.
    11. Florence Habets & Julien Boé & Michel Déqué & Agnès Ducharne & Simon Gascoin & Ali Hachour & Eric Martin & Christian Pagé & Eric Sauquet & Laurent Terray & Dominique Thiéry & Ludovic Oudin & Pascal Vi, 2013. "Impact of climate change on the hydrogeology of two basins in northern France," Climatic Change, Springer, vol. 121(4), pages 771-785, December.
    12. Richard Arsenault & François Brissette & Jean-Stéphane Malo & Marie Minville & Robert Leconte, 2013. "Structural and Non-Structural Climate Change Adaptation Strategies for the Péribonka Water Resource System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2075-2087, May.
    13. Mariana García Criado & Isla H. Myers-Smith & Anne D. Bjorkman & Signe Normand & Anne Blach-Overgaard & Haydn J. D. Thomas & Anu Eskelinen & Konsta Happonen & Juha M. Alatalo & Alba Anadon-Rosell & Is, 2023. "Plant traits poorly predict winner and loser shrub species in a warming tundra biome," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. Ye Tian & Yue-Ping Xu & Xu-Jie Zhang, 2013. "Assessment of Climate Change Impacts on River High Flows through Comparative Use of GR4J, HBV and Xinanjiang Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2871-2888, June.
    15. Michelle Vliet & Stephen Blenkinsop & Aidan Burton & Colin Harpham & Hans Broers & Hayley Fowler, 2012. "A multi-model ensemble of downscaled spatial climate change scenarios for the Dommel catchment, Western Europe," Climatic Change, Springer, vol. 111(2), pages 249-277, March.
    16. Zigeng Niu & Lan Feng & Xinxin Chen & Xiuping Yi, 2021. "Evaluation and Future Projection of Extreme Climate Events in the Yellow River Basin and Yangtze River Basin in China Using Ensembled CMIP5 Models Data," IJERPH, MDPI, vol. 18(11), pages 1-26, June.
    17. Lauren M. Cook & Seth McGinnis & Constantine Samaras, 2020. "The effect of modeling choices on updating intensity-duration-frequency curves and stormwater infrastructure designs for climate change," Climatic Change, Springer, vol. 159(2), pages 289-308, March.
    18. Sogol Moradian & Liz Coleman & Bartosz Kazmierczak & Agnieszka I. Olbert, 2024. "How to Choose the Most Proper Representative Climate Model Over a Study Region? a Case Study of Precipitation Simulations in Ireland with NEX-GDDP-CMIP6 Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 215-234, January.
    19. Lüliu Liu & Hongmei Xu & Yong Wang & Tong Jiang, 2017. "Impacts of 1.5 and 2 °C global warming on water availability and extreme hydrological events in Yiluo and Beijiang River catchments in China," Climatic Change, Springer, vol. 145(1), pages 145-158, November.
    20. Zhe Yuan & Jijun Xu & Yongqiang Wang, 2018. "Projection of Future Extreme Precipitation and Flood Changes of the Jinsha River Basin in China Based on CMIP5 Climate Models," IJERPH, MDPI, vol. 15(11), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:6:d:10.1007_s11269-022-03272-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.