IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i1d10.1007_s11269-023-03665-z.html
   My bibliography  Save this article

How to Choose the Most Proper Representative Climate Model Over a Study Region? a Case Study of Precipitation Simulations in Ireland with NEX-GDDP-CMIP6 Data

Author

Listed:
  • Sogol Moradian

    (University of Galway
    University of Galway)

  • Liz Coleman

    (MaREI Research Centre for Energy, University of Galway)

  • Bartosz Kazmierczak

    (Wroclaw University of Technology)

  • Agnieszka I. Olbert

    (University of Galway
    University of Galway
    MaREI Research Centre for Energy, University of Galway
    Ryan Institute for Environmental, University of Galway)

Abstract

With the aim of providing a multi-criteria decision-support system to capture the spatio-temporal climatological patterns derived from climate models and identify the best representative climate model over each target area, this study developed a toolbox. This toolbox includes (1) climate data from observations and simulations, (2) a broad range of statistical and categorical metrics to quantify the models’ assessment, and (3) a multi-criteria decision-making method of the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) as the central engine, where the climate models are investigated and ranked based on the applied evaluation metrics. To make the concept more tangible, the procedure was utilised for the case of Ireland where the effectiveness of precipitation estimates from the new version of the National Aeronautics and Space Administration Earth Exchange (NEX) Global Daily Downscaled Projections (GDDP) is analysed. The applied archive comprises downscaled hindcast projections based on the outputs from the Phase 6 of the Climate Model Intercomparison Project (CMIP6). Using a set of 13 categorical and statistical metrics, 34 NEX-GDDP-CMIP6 models were compared to the reference data from the Multi-Source Weighted-Ensemble Precipitation (MSWEP) dataset in a 25-year period of 1990–2014. A comprehensive evaluation was done at different temporal scales of daily, monthly and annual. The obtained findings illustrate that the reliability of the estimations varies significantly across time and space. The NEX-GDDP-CMIP6 models, best reproducing the climatological and spatio-temporal features of rainfall data in wetter areas of Ireland, do not perform well in the drier zones and vice versa. Therefore, there is a strong uncertainty in choosing the best representative model. As a result, this framework uses the TOPSIS method, prioritizing the applied 34 climate models based on the employed metrics. This toolbox is easily replicable for other case studies, which can be used as a guideline for policy makers, hydrologists, as well as climate scientists for choosing the best climate model over each target area according to the prediction task: water resources allocation, flood and disaster preparedness, ecosystem conservation, agriculture security, public health, infrastructure planning and risk assessment, hydropower energy, coastal management and climate adaptation and mitigation strategies.

Suggested Citation

  • Sogol Moradian & Liz Coleman & Bartosz Kazmierczak & Agnieszka I. Olbert, 2024. "How to Choose the Most Proper Representative Climate Model Over a Study Region? a Case Study of Precipitation Simulations in Ireland with NEX-GDDP-CMIP6 Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 215-234, January.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:1:d:10.1007_s11269-023-03665-z
    DOI: 10.1007/s11269-023-03665-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03665-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03665-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elke U. Weber, 2010. "What shapes perceptions of climate change?," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 1(3), pages 332-342, May.
    2. Zhaopeng Zhang & Keqin Duan & Huancai Liu & Yali Meng & Rong Chen, 2022. "Spatio-Temporal Variation of Precipitation in the Qinling Mountains from 1970 to 2100 Based on CMIP6 Data," Sustainability, MDPI, vol. 14(14), pages 1-12, July.
    3. Sogol Moradian & Farhad Yazdandoost, 2021. "Seasonal meteorological drought projections over Iran using the NMME data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1089-1107, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guglielmo Zappalà, 2023. "Drought Exposure and Accuracy: Motivated Reasoning in Climate Change Beliefs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(3), pages 649-672, August.
    2. Kasper, Leonie Kea, 2022. "Klimaschutz und Klimawandel: Die Rolle wahrgenommener Gefährdung durch den Klimawandel bei der Unterstützung politischer Maßnahmen zum Klimaschutz," Duisburger Beiträge zur soziologischen Forschung 2022-01, University of Duisburg-Essen, Institute of Sociology.
    3. Christophe Béné & Timothy Frankenberger & Tiffany Griffin & Mark Langworthy & Monica Mueller & Stephanie Martin, 2019. "‘Perception matters’: New insights into the subjective dimension of resilience in the context of humanitarian and food security crises," Progress in Development Studies, , vol. 19(3), pages 186-210, July.
    4. Lore Van Praag & Samuel Lietaer & Caroline Michellier, 2021. "A Qualitative Study on How Perceptions of Environmental Changes are Linked to Migration in Morocco, Senegal, and DR Congo," ULB Institutional Repository 2013/333295, ULB -- Universite Libre de Bruxelles.
    5. Alistair Munro, 2020. "Using experimental manipulation of questionnaire design and a Kenyan panel to test for the reliability of reported perceptions of climate change and adaptation," Climatic Change, Springer, vol. 162(3), pages 1081-1105, October.
    6. Hu, Saiquan & Jia, Xiao & Zhang, Xiaojin & Zheng, Xiaoying & Zhu, Junming, 2017. "How political ideology affects climate perception: Moderation effects of time orientation and knowledge," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 124-131.
    7. Yingying Sun & Ziqiang Han, 2018. "Climate Change Risk Perception in Taiwan: Correlation with Individual and Societal Factors," IJERPH, MDPI, vol. 15(1), pages 1-12, January.
    8. Abagail McWilliams & Annaleena Parhankangas & Jason Coupet & Eric Welch & Darold T. Barnum, 2016. "Strategic Decision Making for the Triple Bottom Line," Business Strategy and the Environment, Wiley Blackwell, vol. 25(3), pages 193-204, March.
    9. Shaikh Mohammad Kais & Md Saidul Islam, 2019. "Perception of Climate Change in Shrimp-Farming Communities in Bangladesh: A Critical Assessment," IJERPH, MDPI, vol. 16(4), pages 1-12, February.
    10. Marie-Michèle Ouellet-Bernier & Najat Bhiry & Laura Brassard, 2023. "Historical temperature and wind conditions in the Hudson Strait region from 1880 to 1950: Kangiqsujuaq, Quaqtaq, and Killiniq," Climatic Change, Springer, vol. 176(6), pages 1-21, June.
    11. Nowakowski, Adam & Oswald. Andrew J, 2020. "Do Europeans Care about Climate Change? An Illustration of the Importance of Data on Human Feelings," The Warwick Economics Research Paper Series (TWERPS) 1303, University of Warwick, Department of Economics.
    12. Matthew T. Ballew & Jennifer R. Marlon & Matthew H. Goldberg & Edward W. Maibach & Seth A. Rosenthal & Emily Aiken & Anthony Leiserowitz, 2022. "Changing minds about global warming: vicarious experience predicts self-reported opinion change in the USA," Climatic Change, Springer, vol. 173(3), pages 1-25, August.
    13. Sarr, Mare & Bezabih Ayele, Mintewab & Kimani, Mumbi E. & Ruhinduka, Remidius, 2021. "Who benefits from climate-friendly agriculture? The marginal returns to a rainfed system of rice intensification in Tanzania," World Development, Elsevier, vol. 138(C).
    14. León, Carmelo J. & González Hernández, Matías M. & Lam-González, Yen, 2023. "COVID-19 effects on travel choices under climate risks," Annals of Tourism Research, Elsevier, vol. 103(C).
    15. Ting Liu & Nick Shryane & Mark Elliot, 2022. "Attitudes to climate change risk: classification of and transitions in the UK population between 2012 and 2020," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-15, December.
    16. Sogol Moradian & Ali Torabi Haghighi & Maryam Asadi & Seyed Ahmad Mirbagheri, 2023. "Future Changes in Precipitation Over Northern Europe Based on a Multi-model Ensemble from CMIP6: Focus on Tana River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2447-2463, May.
    17. Mashi, Sani Abubakar & Inkani, Amina Ibrahim & Oghenejabor, Obaro Dominic, 2022. "Determinants of awareness levels of climate smart agricultural technologies and practices of urban farmers in Kuje, Abuja, Nigeria," Technology in Society, Elsevier, vol. 70(C).
    18. Hou, Lingling & Min, Shi & Huang, Qiuqiong & Huang, Jikun, 2023. "Farmers' perceptions of drought-severity and the impacts on ex-ante and ex-post adaptations to droughts: Evidence from maize farmers in China," Agricultural Water Management, Elsevier, vol. 279(C).
    19. Abirham Cherinet & Zenebe Mekonnen, 2019. "Comparing Farmers Perception of Climate Change and Variability with Historical Climate Data- The Case of Ensaro District, Ethiopia," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 17(4), pages 114-120, February.
    20. Jin, Shaoze & Zhang, Lijuan & Min, Shi, 2021. "Regional Climate Extremes and Farmer’s Perception: Impact on Acceptance of Environmentally-Friendly Rubber Plantations in Southwest China," 2021 Conference, August 17-31, 2021, Virtual 314949, International Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:1:d:10.1007_s11269-023-03665-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.