IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34049-3.html
   My bibliography  Save this article

Vegetation type is an important predictor of the arctic summer land surface energy budget

Author

Listed:
  • Jacqueline Oehri

    (University of Zurich
    McGill University)

  • Gabriela Schaepman-Strub

    (University of Zurich)

  • Jin-Soo Kim

    (University of Zurich
    Tat Chee Ave, Kowloon Tong)

  • Raleigh Grysko

    (University of Zurich)

  • Heather Kropp

    (Hamilton College)

  • Inge Grünberg

    (Alfred-Wegener Institute)

  • Vitalii Zemlianskii

    (University of Zurich)

  • Oliver Sonnentag

    (Université de Montréal)

  • Eugénie S. Euskirchen

    (University of Alaska Fairbanks)

  • Merin Reji Chacko

    (University of Zurich
    CHN, Universitätstrasse 16
    Swiss Federal Institute for Forest, Snow and Landscape Research (WSL))

  • Giovanni Muscari

    (Via di Vigna Murata)

  • Peter D. Blanken

    (University of Colorado)

  • Joshua F. Dean

    (University of Bristol)

  • Alcide Sarra

    (ENEA)

  • Richard J. Harding

    (MacLean Bldg)

  • Ireneusz Sobota

    (Nicolaus Copernicus University)

  • Lars Kutzbach

    (University of Hamburg)

  • Elena Plekhanova

    (University of Zurich)

  • Aku Riihelä

    (Erik Palménin aukio 1)

  • Julia Boike

    (Alfred-Wegener Institute
    Humboldt-Universität zu Berlin)

  • Nathaniel B. Miller

    (University of Wisconsin-Madison)

  • Jason Beringer

    (The University of Western Australia)

  • Efrén López-Blanco

    (Greenland Institute of Natural Resources, Kivioq 2
    Aarhus University)

  • Paul C. Stoy

    (University of Wisconsin-Madison)

  • Ryan C. Sullivan

    (Argonne National Laboratory)

  • Marek Kejna

    (Nicolaus Copernicus University)

  • Frans-Jan W. Parmentier

    (University of Oslo
    Lund University)

  • John A. Gamon

    (University of Nebraska - Lincoln)

  • Mikhail Mastepanov

    (Aarhus University
    Oulanka Research Station, University of Oulu)

  • Christian Wille

    (Wissenschaftspark Albert Einstein)

  • Marcin Jackowicz-Korczynski

    (Aarhus University
    Lund University)

  • Dirk N. Karger

    (Snow, and Landscape Research (WSL), Zürcherstrasse 111)

  • William L. Quinton

    (Wilfrid Laurier University)

  • Jaakko Putkonen

    (University of North Dakota)

  • Dirk As

    (Geological Survey of Denmark and Greenland (GEUS))

  • Torben R. Christensen

    (Aarhus University
    Oulanka Research Station, University of Oulu)

  • Maria Z. Hakuba

    (Jet Propulsion Laboratory, CalTech)

  • Robert S. Stone

    (NOAA Global Monitoring Laboratory)

  • Stefan Metzger

    (National Ecological Observatory Network, Battelle
    University of Wisconsin-Madison)

  • Baptiste Vandecrux

    (Geological Survey of Denmark and Greenland (GEUS))

  • Gerald V. Frost

    (Alaska Biological Research, Inc)

  • Martin Wild

    (ETH Zurich, CHN)

  • Birger Hansen

    (University of Copenhagen)

  • Daniela Meloni

    (Lungotevere Grande Ammiraglio Thaon di Revel, 76)

  • Florent Domine

    (Université Laval, Pavillon Alexandre-Vachon
    Université Laval, Pavillon Alexandre-Vachon)

  • Mariska Beest

    (Utrecht University, Vening Meinesz Building
    University Way, Summerstrand, Gqeberha)

  • Torsten Sachs

    (Wissenschaftspark Albert Einstein)

  • Aram Kalhori

    (Wissenschaftspark Albert Einstein)

  • Adrian V. Rocha

    (University of Notre Dame, 100 Galvin Life Sciences)

  • Scott N. Williamson

    (Canadian High Arctic Research Station)

  • Sara Morris

    (NOAA Physical Sciences Laboratory)

  • Adam L. Atchley

    (Los Alamos National Laboratory)

  • Richard Essery

    (University of Edinburgh)

  • Benjamin R. K. Runkle

    (University of Arkansas)

  • David Holl

    (University of Hamburg)

  • Laura D. Riihimaki

    (NOAA Global Monitoring Laboratory
    University of Colorado Boulder Campus)

  • Hiroki Iwata

    (Shinshu University)

  • Edward A. G. Schuur

    (Northern Arizona University)

  • Christopher J. Cox

    (NOAA Physical Sciences Laboratory)

  • Andrey A. Grachev

    (DEVCOM Army Research Laboratory)

  • Joseph P. McFadden

    (University of California Santa Barbara)

  • Robert S. Fausto

    (Geological Survey of Denmark and Greenland (GEUS))

  • Mathias Göckede

    (Max Planck Institute for Biogeochemistry)

  • Masahito Ueyama

    (Osaka Metropolitan University, Sakai, Kita Ward, Umeda)

  • Norbert Pirk

    (University of Oslo)

  • Gijs Boer

    (NOAA Physical Sciences Laboratory
    University of Colorado Boulder Campus
    University of Colorado)

  • M. Syndonia Bret-Harte

    (University of Alaska Fairbanks)

  • Matti Leppäranta

    (University of Helsinki)

  • Konrad Steffen

    (Snow, and Landscape Research (WSL), Zürcherstrasse 111)

  • Thomas Friborg

    (University of Copenhagen)

  • Atsumu Ohmura

    (ETH Zurich, CHN)

  • Colin W. Edgar

    (University of Alaska Fairbanks)

  • Johan Olofsson

    (Umeå University)

  • Scott D. Chambers

    (ANSTO Lucas Heights, New Illawarra Rd)

Abstract

Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm−2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.

Suggested Citation

  • Jacqueline Oehri & Gabriela Schaepman-Strub & Jin-Soo Kim & Raleigh Grysko & Heather Kropp & Inge Grünberg & Vitalii Zemlianskii & Oliver Sonnentag & Eugénie S. Euskirchen & Merin Reji Chacko & Giovan, 2022. "Vegetation type is an important predictor of the arctic summer land surface energy budget," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34049-3
    DOI: 10.1038/s41467-022-34049-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34049-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34049-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anne D. Bjorkman & Isla H. Myers-Smith & Sarah C. Elmendorf & Signe Normand & Nadja Rüger & Pieter S. A. Beck & Anne Blach-Overgaard & Daan Blok & J. Hans C. Cornelissen & Bruce C. Forbes & Damien Geo, 2018. "Plant functional trait change across a warming tundra biome," Nature, Nature, vol. 562(7725), pages 57-62, October.
    2. Sarah C. Elmendorf & Gregory H. R. Henry & Robert D. Hollister & Robert G. Björk & Noémie Boulanger-Lapointe & Elisabeth J. Cooper & Johannes H. C. Cornelissen & Thomas A. Day & Ellen Dorrepaal & Tati, 2012. "Plot-scale evidence of tundra vegetation change and links to recent summer warming," Nature Climate Change, Nature, vol. 2(6), pages 453-457, June.
    3. Manuel Helbig & James Michael Waddington & Pavel Alekseychik & Brian D. Amiro & Mika Aurela & Alan G. Barr & T. Andrew Black & Peter D. Blanken & Sean K. Carey & Jiquan Chen & Jinshu Chi & Ankur R. De, 2020. "Increasing contribution of peatlands to boreal evapotranspiration in a warming climate," Nature Climate Change, Nature, vol. 10(6), pages 555-560, June.
    4. Jacqueline Oehri & Bernhard Schmid & Gabriela Schaepman-Strub & Pascal A. Niklaus, 2020. "Terrestrial land-cover type richness is positively linked to landscape-level functioning," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    5. Michelle R. McCrystall & Julienne Stroeve & Mark Serreze & Bruce C. Forbes & James A. Screen, 2021. "New climate models reveal faster and larger increases in Arctic precipitation than previously projected," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Isla H. Myers-Smith & Jeffrey T. Kerby & Gareth K. Phoenix & Jarle W. Bjerke & Howard E. Epstein & Jakob J. Assmann & Christian John & Laia Andreu-Hayles & Sandra Angers-Blondin & Pieter S. A. Beck & , 2020. "Complexity revealed in the greening of the Arctic," Nature Climate Change, Nature, vol. 10(2), pages 106-117, February.
    7. Richard G. Pearson & Steven J. Phillips & Michael M. Loranty & Pieter S. A. Beck & Theodoros Damoulas & Sarah J. Knight & Scott J. Goetz, 2013. "Shifts in Arctic vegetation and associated feedbacks under climate change," Nature Climate Change, Nature, vol. 3(7), pages 673-677, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Efrén López-Blanco & Elmer Topp-Jørgensen & Torben R. Christensen & Morten Rasch & Henrik Skov & Marie F. Arndal & M. Syndonia Bret-Harte & Terry V. Callaghan & Niels M. Schmidt, 2024. "Towards an increasingly biased view on Arctic change," Nature Climate Change, Nature, vol. 14(2), pages 152-155, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanlan Liu & William J. Riley & Trevor F. Keenan & Zelalem A. Mekonnen & Jennifer A. Holm & Qing Zhu & Margaret S. Torn, 2022. "Dispersal and fire limit Arctic shrub expansion," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Mariana García Criado & Isla H. Myers-Smith & Anne D. Bjorkman & Signe Normand & Anne Blach-Overgaard & Haydn J. D. Thomas & Anu Eskelinen & Konsta Happonen & Juha M. Alatalo & Alba Anadon-Rosell & Is, 2023. "Plant traits poorly predict winner and loser shrub species in a warming tundra biome," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Yating Chen & Xiao Cheng & Aobo Liu & Qingfeng Chen & Chengxin Wang, 2023. "Tracking lake drainage events and drained lake basin vegetation dynamics across the Arctic," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Jun Zhang & Xiao-Qian Li & Huan-Wen Peng & Lisi Hai & Andrey S. Erst & Florian Jabbour & Rosa del C. Ortiz & Fu-Cai Xia & Pamela S. Soltis & Douglas E. Soltis & Wei Wang, 2023. "Evolutionary history of the Arctic flora," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Ning Chen & Yifei Zhang & Fenghui Yuan & Changchun Song & Mingjie Xu & Qingwei Wang & Guangyou Hao & Tao Bao & Yunjiang Zuo & Jianzhao Liu & Tao Zhang & Yanyu Song & Li Sun & Yuedong Guo & Hao Zhang &, 2023. "Warming-induced vapor pressure deficit suppression of vegetation growth diminished in northern peatlands," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Sachin Kumar & Tejdeep Kaur Kler & Gurkirat Singh Sekhon & Tanvi Sahni, 2024. "Impacts on avian migratory patterns due to climate change and hormonal disruption: a review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(7), pages 1-23, October.
    9. David K Swanson, 2015. "Environmental Limits of Tall Shrubs in Alaska’s Arctic National Parks," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-34, September.
    10. Floris M. Beest & Efrén López-Blanco & Lars H. Hansen & Niels M. Schmidt, 2023. "Extreme shifts in habitat suitability under contemporary climate change for a high-Arctic herbivore," Climatic Change, Springer, vol. 176(4), pages 1-14, April.
    11. Lili Xu & Zhenfa Tu & Yuke Zhou & Guangming Yu, 2018. "Profiling Human-Induced Vegetation Change in the Horqin Sandy Land of China Using Time Series Datasets," Sustainability, MDPI, vol. 10(4), pages 1-18, April.
    12. Yuhao Jin & Han Zhang & Yuchao Yan & Peitong Cong, 2020. "A Semi-Parametric Geographically Weighted Regression Approach to Exploring Driving Factors of Fractional Vegetation Cover: A Case Study of Guangdong," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    13. Jinshi Jian & Vanessa Bailey & Kalyn Dorheim & Alexandra G. Konings & Dalei Hao & Alexey N. Shiklomanov & Abigail Snyder & Meredith Steele & Munemasa Teramoto & Rodrigo Vargas & Ben Bond-Lamberty, 2022. "Historically inconsistent productivity and respiration fluxes in the global terrestrial carbon cycle," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Coenen, Johanna & Newig, Jens & Meyfroidt, Patrick, 2022. "Environmental governance of a Belt and Road project in Montenegro – National agency and external influences," Land Use Policy, Elsevier, vol. 119(C).
    15. Stephan Kambach & Francesco Maria Sabatini & Fabio Attorre & Idoia Biurrun & Gerhard Boenisch & Gianmaria Bonari & Andraž Čarni & Maria Laura Carranza & Alessandro Chiarucci & Milan Chytrý & Jürgen De, 2023. "Climate-trait relationships exhibit strong habitat specificity in plant communities across Europe," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Gbenga Abayomi Afuye & Ahmed Mukalazi Kalumba & Israel Ropo Orimoloye, 2021. "Characterisation of Vegetation Response to Climate Change: A Review," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
    17. Kruse, Stefan & Wieczorek, Mareike & Jeltsch, Florian & Herzschuh, Ulrike, 2016. "Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix," Ecological Modelling, Elsevier, vol. 338(C), pages 101-121.
    18. Efrén López-Blanco & Elmer Topp-Jørgensen & Torben R. Christensen & Morten Rasch & Henrik Skov & Marie F. Arndal & M. Syndonia Bret-Harte & Terry V. Callaghan & Niels M. Schmidt, 2024. "Towards an increasingly biased view on Arctic change," Nature Climate Change, Nature, vol. 14(2), pages 152-155, February.
    19. Li, Xi & Zheng, Yi & Sun, Zan & Tian, Yong & Zheng, Chunmiao & Liu, Jie & Liu, Shaomin & Xu, Ziwei, 2017. "An integrated ecohydrological modeling approach to exploring the dynamic interaction between groundwater and phreatophytes," Ecological Modelling, Elsevier, vol. 356(C), pages 127-140.
    20. K. M. Walter Anthony & P. Anthony & N. Hasson & C. Edgar & O. Sivan & E. Eliani-Russak & O. Bergman & B. J. Minsley & S. R. James & N. J. Pastick & A. Kholodov & S. Zimov & E. Euskirchen & M. S. Bret-, 2024. "Upland Yedoma taliks are an unpredicted source of atmospheric methane," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34049-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.