IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39573-4.html
   My bibliography  Save this article

Plant traits poorly predict winner and loser shrub species in a warming tundra biome

Author

Listed:
  • Mariana García Criado

    (University of Edinburgh)

  • Isla H. Myers-Smith

    (University of Edinburgh)

  • Anne D. Bjorkman

    (University of Gothenburg
    Gothenburg Global Biodiversity Centre)

  • Signe Normand

    (Aarhus University)

  • Anne Blach-Overgaard

    (Aarhus University)

  • Haydn J. D. Thomas

    (University of Edinburgh)

  • Anu Eskelinen

    (Helmholtz Centre for Environmental Research - UFZ
    German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
    University of Oulu)

  • Konsta Happonen

    (University of Gothenburg)

  • Juha M. Alatalo

    (Qatar University)

  • Alba Anadon-Rosell

    (Cerdanyola del Vallès
    University of Greifswald)

  • Isabelle Aubin

    (Great Lakes Forestry Centre)

  • Mariska Beest

    (Utrecht University
    Nelson Mandela University)

  • Katlyn R. Betway-May

    (Grand Valley State University)

  • Daan Blok

    (Dutch Research Council (NWO))

  • Allan Buras

    (School of Life Sciences Weihenstephan)

  • Bruno E. L. Cerabolini

    (University of Insubria)

  • Katherine Christie

    (Threatened, Endangered, and Diversity Program, Alaska Department of Fish and Game)

  • J. Hans C. Cornelissen

    (Vrije Universiteit)

  • Bruce C. Forbes

    (University of Lapland)

  • Esther R. Frei

    (WSL Institute for Snow and Avalanche Research SLF
    Swiss Federal Research Institute WSL
    University of British Columbia
    Climate Change and Extremes in Alpine Regions Research Centre CERC)

  • Paul Grogan

    (Queen’s University, Kingston)

  • Luise Hermanutz

    (Memorial University)

  • Robert D. Hollister

    (Grand Valley State University)

  • James Hudson

    (Government of British Columbia)

  • Maitane Iturrate-Garcia

    (Federal Institute of Metrology METAS)

  • Elina Kaarlejärvi

    (University of Helsinki)

  • Michael Kleyer

    (University of Oldenburg)

  • Laurent J. Lamarque

    (Université du Québec à Trois-Rivières, Trois-Rivières)

  • Jonas J. Lembrechts

    (University of Antwerp)

  • Esther Lévesque

    (Université du Québec à Trois-Rivières, Trois-Rivières)

  • Miska Luoto

    (University of Helsinki)

  • Petr Macek

    (Biology Centre of the Czech Academy of Sciences)

  • Jeremy L. May

    (Florida International University
    Marietta College)

  • Janet S. Prevéy

    (WSL Institute for Snow and Avalanche Research SLF
    U.S. Geological Survey)

  • Gabriela Schaepman-Strub

    (University of Zurich)

  • Serge N. Sheremetiev

    (Komarov Botanical Institute)

  • Laura Siegwart Collier

    (Memorial University
    Terra Nova National Park, Parks Canada Agency)

  • Nadejda A. Soudzilovskaia

    (Hasselt University)

  • Andrew Trant

    (University of Waterloo)

  • Susanna E. Venn

    (Deakin University)

  • Anna-Maria Virkkala

    (University of Helsinki
    Woodwell Climate Research Center)

Abstract

Climate change is leading to species redistributions. In the tundra biome, shrubs are generally expanding, but not all tundra shrub species will benefit from warming. Winner and loser species, and the characteristics that may determine success or failure, have not yet been fully identified. Here, we investigate whether past abundance changes, current range sizes and projected range shifts derived from species distribution models are related to plant trait values and intraspecific trait variation. We combined 17,921 trait records with observed past and modelled future distributions from 62 tundra shrub species across three continents. We found that species with greater variation in seed mass and specific leaf area had larger projected range shifts, and projected winner species had greater seed mass values. However, trait values and variation were not consistently related to current and projected ranges, nor to past abundance change. Overall, our findings indicate that abundance change and range shifts will not lead to directional modifications in shrub trait composition, since winner and loser species share relatively similar trait spaces.

Suggested Citation

  • Mariana García Criado & Isla H. Myers-Smith & Anne D. Bjorkman & Signe Normand & Anne Blach-Overgaard & Haydn J. D. Thomas & Anu Eskelinen & Konsta Happonen & Juha M. Alatalo & Alba Anadon-Rosell & Is, 2023. "Plant traits poorly predict winner and loser shrub species in a warming tundra biome," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39573-4
    DOI: 10.1038/s41467-023-39573-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39573-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39573-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anne D. Bjorkman & Isla H. Myers-Smith & Sarah C. Elmendorf & Signe Normand & Nadja Rüger & Pieter S. A. Beck & Anne Blach-Overgaard & Daan Blok & J. Hans C. Cornelissen & Bruce C. Forbes & Damien Geo, 2018. "Plant functional trait change across a warming tundra biome," Nature, Nature, vol. 562(7725), pages 57-62, October.
    2. Camille Parmesan & Nils Ryrholm & Constantí Stefanescu & Jane K. Hill & Chris D. Thomas & Henri Descimon & Brian Huntley & Lauri Kaila & Jaakko Kullberg & Toomas Tammaru & W. John Tennent & Jeremy A. , 1999. "Poleward shifts in geographical ranges of butterfly species associated with regional warming," Nature, Nature, vol. 399(6736), pages 579-583, June.
    3. Sarah C. Elmendorf & Gregory H. R. Henry & Robert D. Hollister & Robert G. Björk & Noémie Boulanger-Lapointe & Elisabeth J. Cooper & Johannes H. C. Cornelissen & Thomas A. Day & Ellen Dorrepaal & Tati, 2012. "Plot-scale evidence of tundra vegetation change and links to recent summer warming," Nature Climate Change, Nature, vol. 2(6), pages 453-457, June.
    4. Wilfried Thuiller & Maya Guéguen & Julien Renaud & Dirk N. Karger & Niklaus E. Zimmermann, 2019. "Uncertainty in ensembles of global biodiversity scenarios," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    5. Ian J. Wright & Peter B. Reich & Mark Westoby & David D. Ackerly & Zdravko Baruch & Frans Bongers & Jeannine Cavender-Bares & Terry Chapin & Johannes H. C. Cornelissen & Matthias Diemer & Jaume Flexas, 2004. "The worldwide leaf economics spectrum," Nature, Nature, vol. 428(6985), pages 821-827, April.
    6. Elina Kaarlejärvi & Anu Eskelinen & Johan Olofsson, 2017. "Herbivores rescue diversity in warming tundra by modulating trait-dependent species losses and gains," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    7. Jake M. Alexander & Jeffrey M. Diez & Jonathan M. Levine, 2015. "Novel competitors shape species’ responses to climate change," Nature, Nature, vol. 525(7570), pages 515-518, September.
    8. Marc Macias-Fauria & Bruce C. Forbes & Pentti Zetterberg & Timo Kumpula, 2012. "Eurasian Arctic greening reveals teleconnections and the potential for structurally novel ecosystems," Nature Climate Change, Nature, vol. 2(8), pages 613-618, August.
    9. Isla H. Myers-Smith & Jeffrey T. Kerby & Gareth K. Phoenix & Jarle W. Bjerke & Howard E. Epstein & Jakob J. Assmann & Christian John & Laia Andreu-Hayles & Sandra Angers-Blondin & Pieter S. A. Beck & , 2020. "Complexity revealed in the greening of the Arctic," Nature Climate Change, Nature, vol. 10(2), pages 106-117, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanlan Liu & William J. Riley & Trevor F. Keenan & Zelalem A. Mekonnen & Jennifer A. Holm & Qing Zhu & Margaret S. Torn, 2022. "Dispersal and fire limit Arctic shrub expansion," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Jacqueline Oehri & Gabriela Schaepman-Strub & Jin-Soo Kim & Raleigh Grysko & Heather Kropp & Inge Grünberg & Vitalii Zemlianskii & Oliver Sonnentag & Eugénie S. Euskirchen & Merin Reji Chacko & Giovan, 2022. "Vegetation type is an important predictor of the arctic summer land surface energy budget," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Floris M. Beest & Efrén López-Blanco & Lars H. Hansen & Niels M. Schmidt, 2023. "Extreme shifts in habitat suitability under contemporary climate change for a high-Arctic herbivore," Climatic Change, Springer, vol. 176(4), pages 1-14, April.
    4. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Stephan Kambach & Francesco Maria Sabatini & Fabio Attorre & Idoia Biurrun & Gerhard Boenisch & Gianmaria Bonari & Andraž Čarni & Maria Laura Carranza & Alessandro Chiarucci & Milan Chytrý & Jürgen De, 2023. "Climate-trait relationships exhibit strong habitat specificity in plant communities across Europe," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Eric W. Seabloom & Maria C. Caldeira & Kendi F. Davies & Linda Kinkel & Johannes M. H. Knops & Kimberly J. Komatsu & Andrew S. MacDougall & Georgiana May & Michael Millican & Joslin L. Moore & Luis I., 2023. "Globally consistent response of plant microbiome diversity across hosts and continents to soil nutrients and herbivores," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    8. Barton, Madeleine G. & Terblanche, John S. & Sinclair, Brent J., 2019. "Incorporating temperature and precipitation extremes into process-based models of African lepidoptera changes the predicted distribution under climate change," Ecological Modelling, Elsevier, vol. 394(C), pages 53-65.
    9. Ilaria Bernabò & Viviana Cittadino & Sandro Tripepi & Vittoria Marchianò & Sandro Piazzini & Maurizio Biondi & Mattia Iannella, 2022. "Updating Distribution, Ecology, and Hotspots for Three Amphibian Species to Set Conservation Priorities in a European Glacial Refugium," Land, MDPI, vol. 11(8), pages 1-19, August.
    10. Eleonora Beccari & Carlos P. Carmona, 2024. "Aboveground and belowground sizes are aligned in the unified spectrum of plant form and function," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Sachin Kumar & Tejdeep Kaur Kler & Gurkirat Singh Sekhon & Tanvi Sahni, 2024. "Impacts on avian migratory patterns due to climate change and hormonal disruption: a review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(7), pages 1-23, October.
    12. Sarah R. Weiskopf & Forest Isbell & Maria Isabel Arce-Plata & Moreno Di Marco & Mike Harfoot & Justin Johnson & Susannah B. Lerman & Brian W. Miller & Toni Lyn Morelli & Akira S. Mori & Ensheng Weng &, 2024. "Biodiversity loss reduces global terrestrial carbon storage," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Huihui Ding & Wensheng Chen & Jiangrong Li & Fangwei Fu & Yueyao Li & Siying Xiao, 2023. "Physiological Characteristics and Cold Resistance of Five Woody Plants in Treeline Ecotone of Sygera Mountains," Sustainability, MDPI, vol. 15(4), pages 1-11, February.
    14. Chaianunporn, Thotsapol & Hovestadt, Thomas, 2012. "Concurrent evolution of random dispersal and habitat niche width in host-parasitoid systems," Ecological Modelling, Elsevier, vol. 247(C), pages 241-250.
    15. Ernesto Azzurro & Paula Moschella & Francesc Maynou, 2011. "Tracking Signals of Change in Mediterranean Fish Diversity Based on Local Ecological Knowledge," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-8, September.
    16. Petter, Gunnar & Kreft, Holger & Ong, Yongzhi & Zotz, Gerhard & Cabral, Juliano Sarmento, 2021. "Modelling the long-term dynamics of tropical forests: From leaf traits to whole-tree growth patterns," Ecological Modelling, Elsevier, vol. 460(C).
    17. Bezerra, Antonio Diego M. & Pacheco Filho, Alípio J.S. & Bomfim, Isac G.A. & Smagghe, Guy & Freitas, Breno M., 2019. "Agricultural area losses and pollinator mismatch due to climate changes endanger passion fruit production in the Neotropics," Agricultural Systems, Elsevier, vol. 169(C), pages 49-57.
    18. Maria Wanic & Mariola Parzonka, 2023. "Assessing the Role of Crop Rotation in Shaping Foliage Characteristics and Leaf Gas Exchange Parameters for Winter Wheat," Agriculture, MDPI, vol. 13(5), pages 1-20, April.
    19. Daijun Liu & Adriane Esquivel-Muelbert & Nezha Acil & Julen Astigarraga & Emil Cienciala & Jonas Fridman & Georges Kunstler & Thomas J. Matthews & Paloma Ruiz-Benito & Jonathan P. Sadler & Mart-Jan Sc, 2024. "Mapping multi-dimensional variability in water stress strategies across temperate forests," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Jinshi Jian & Vanessa Bailey & Kalyn Dorheim & Alexandra G. Konings & Dalei Hao & Alexey N. Shiklomanov & Abigail Snyder & Meredith Steele & Munemasa Teramoto & Rodrigo Vargas & Ben Bond-Lamberty, 2022. "Historically inconsistent productivity and respiration fluxes in the global terrestrial carbon cycle," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39573-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.