IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i5d10.1007_s11269-022-03106-3.html
   My bibliography  Save this article

Study on the Early Warning for Flash Flood Based on Random Rainfall Pattern

Author

Listed:
  • Wenlin Yuan

    (Zhengzhou University
    MWR)

  • Lu Lu

    (Zhengzhou University)

  • Hanzhen Song

    (Yellow River Engineering Consulting Co)

  • Xiang Zhang

    (MWR
    Yellow River Institute of Hydraulic Research, YRCC)

  • Linjuan Xu

    (MWR
    Yellow River Institute of Hydraulic Research, YRCC)

  • Chengguo Su

    (Zhengzhou University)

  • Meiqi Liu

    (Zhengzhou University)

  • Denghua Yan

    (Zhengzhou University
    Water Resources Department, China Institute of Water Resources and Hydropower Research)

  • Zening Wu

    (Zhengzhou University)

Abstract

Flash floods cause great harm to people's lives and property safety. Rainfall is the key factor which induces flash floods, and critical rainfall (CR) is the most widely used indicator in flash flood early warning systems. Due to the randomness of rainfall, the CR has great uncertainty, which causes missed alarms when predicting flash floods. To improve the early warning accuracy for flash floods, a random rainfall pattern (RRP) generation method based on control parameters, including the comprehensive peak position coefficient (CPPC) and comprehensive peak ratio (CPR), is proposed and an early warning model with dynamic correction based on RRP identification is established. The rainfall-runoff process is simulated by the HEC-HMS hydrological model, and the CR threshold space corresponding to the RRP set is calculated based on the trial algorithm. Xinxian, a small watershed located in Henan Province, China, is taken as the case study. The results show that the method for generating the RRP is practical and simple, and it effectively reflects the CR uncertainty caused by the rainfall pattern randomness. All the Nash–Sutcliffe efficiencies are greater than 0.8, which proves that the HEC-HMS model has good application performance in the small watershed. Through sensitivity analysis, $$(0.5,b_{max} )$$ ( 0.5 , b max ) , $$(r,b_{max} 0.5)$$ ( r , b max > 0.5 ) are identified as key, safe, and dangerous rainfall patterns, respectively. The proposed early warning model is effective, which increases the forecast lead time and reduce the omissions rate of flash flood early earning.

Suggested Citation

  • Wenlin Yuan & Lu Lu & Hanzhen Song & Xiang Zhang & Linjuan Xu & Chengguo Su & Meiqi Liu & Denghua Yan & Zening Wu, 2022. "Study on the Early Warning for Flash Flood Based on Random Rainfall Pattern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1587-1609, March.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:5:d:10.1007_s11269-022-03106-3
    DOI: 10.1007/s11269-022-03106-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03106-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03106-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaoyan Zhai & Liang Guo & Ronghua Liu & Yongyong Zhang, 2018. "Rainfall threshold determination for flash flood warning in mountainous catchments with consideration of antecedent soil moisture and rainfall pattern," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 605-625, November.
    2. Yan Zhou & Zhongmin Liang & Binquan Li & Yixin Huang & Kai Wang & Yiming Hu, 2021. "Seamless Integration of Rainfall Spatial Variability and a Conceptual Hydrological Model," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
    3. Longfei Han & Youpeng Xu & Guangbo Pan & Xiaojun Deng & Chunsheng Hu & Hongliang Xu & Hongyi Shi, 2015. "Changing properties of precipitation extremes in the urban areas, Yangtze River Delta, China, during 1957–2013," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 437-454, October.
    4. Jiake Li & Chenning Deng & Huaien Li & Menghua Ma & Yajiao Li, 2018. "Hydrological Environmental Responses of LID and Approach for Rainfall Pattern Selection in Precipitation Data-Lacked Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3271-3284, August.
    5. Ming Zhong & Ting Zeng & Tao Jiang & Huan Wu & Xiaohong Chen & Yang Hong, 2021. "A Copula-Based Multivariate Probability Analysis for Flash Flood Risk under the Compound Effect of Soil Moisture and Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 83-98, January.
    6. Eyad Abushandi & Broder Merkel, 2013. "Modelling Rainfall Runoff Relations Using HEC-HMS and IHACRES for a Single Rain Event in an Arid Region of Jordan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2391-2409, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenlin Yuan & Xinyu Tu & Chengguo Su & Meiqi Liu & Denghua Yan & Zening Wu, 2021. "Research on the Critical Rainfall of Flash Floods in Small Watersheds Based on the Design of Characteristic Rainfall Patterns," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3297-3319, August.
    2. Thelma Dede Baddoo & Zhijia Li & Yiqing Guan & Kenneth Rodolphe Chabi Boni & Isaac Kwesi Nooni, 2020. "Data-Driven Modeling and the Influence of Objective Function Selection on Model Performance in Limited Data Regions," IJERPH, MDPI, vol. 17(11), pages 1-26, June.
    3. Yi Ge & Wen Dou & Jianping Dai, 2017. "A New Approach to Identify Social Vulnerability to Climate Change in the Yangtze River Delta," Sustainability, MDPI, vol. 9(12), pages 1-19, December.
    4. Mohammad Nazeri-Tahroudi & Yousef Ramezani & Carlo Michele & Rasoul Mirabbasi, 2022. "Bivariate Simulation of Potential Evapotranspiration Using Copula-GARCH Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 1007-1024, February.
    5. Ming Zhong & Ting Zeng & Tao Jiang & Huan Wu & Xiaohong Chen & Yang Hong, 2021. "A Copula-Based Multivariate Probability Analysis for Flash Flood Risk under the Compound Effect of Soil Moisture and Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 83-98, January.
    6. Zongjia Zhang & Yiping Zeng & Zhejun Huang & Junguo Liu & Lili Yang, 2023. "Multi-Source Data Fusion and Hydrodynamics for Urban Waterlogging Risk Identification," IJERPH, MDPI, vol. 20(3), pages 1-25, January.
    7. Xianqi Zhang & Kai Wang & Tao Wang, 2021. "SWMM-Based Assessment of the Improvement of Hydrodynamic Conditions of Urban Water System Connectivity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4519-4534, October.
    8. Chen An & Ming Dou & Jianling Zhang & Guiqiu Li, 2021. "Method for Analyzing Copula-Based Water Shortage Risk in Multisource Water Supply Cities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4877-4894, November.
    9. Youssef Kassem & Hüseyin Gökçekuş & Nour Alijl, 2023. "Gridded Precipitation Datasets and Gauge Precipitation Products for Driving Hydrological Models in the Dead Sea Region, Jordan," Sustainability, MDPI, vol. 15(15), pages 1-29, August.
    10. A’kif Al-Fugara & Ali Nouh Mabdeh & Saad Alayyash & Awni Khasawneh, 2023. "Hydrological and Hydrodynamic Modeling for Flash Flood and Embankment Dam Break Scenario: Hazard Mapping of Extreme Storm Events," Sustainability, MDPI, vol. 15(3), pages 1-28, January.
    11. Muhammad Azmat & Francesco Laio & Davide Poggi, 2015. "Estimation of Water Resources Availability and Mini-Hydro Productivity in High-Altitude Scarcely-Gauged Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5037-5054, November.
    12. Wei Zhang & Yan Zhu & Xuejun Wang, 2014. "A Modeling Method to Evaluate the Management Strategy of Urban Storm Runoff," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 541-552, January.
    13. Agraw Ali Beshir & Jaemin Song, 2021. "Urbanization and its impact on flood hazard: the case of Addis Ababa, Ethiopia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 1167-1190, October.
    14. Eyad Abushandi & Manar Al Ajmi, 2022. "Assessment of Hydrological Extremes for Arid Catchments: A Case Study in Wadi Al Jizzi, North-West Oman," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    15. Changjun Liu & Liang Guo & Lei Ye & Shunfu Zhang & Yanzeng Zhao & Tianyu Song, 2018. "A review of advances in China’s flash flood early-warning system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 619-634, June.
    16. Priscila Celebrini de Oliveira Campos & Tainá da Silva Rocha Paz & Letícia Lenz & Yangzi Qiu & Camila Nascimento Alves & Ana Paula Roem Simoni & José Carlos Cesar Amorim & Gilson Brito Alves Lima & Ma, 2020. "Multi-Criteria Decision Method for Sustainable Watercourse Management in Urban Areas," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
    17. Qiang Fu & Long-Bin Lu & Jin-Bai Huang, 2014. "Numerical Analysis of Surface Runoff for the Liudaogou Drainage Basin in the North Loess Plateau, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4809-4822, October.
    18. Rajeev Ranjan & Pankaj R. Dhote & Praveen K. Thakur & Shiv P. Aggarwal, 2022. "Investigation of basin characteristics: Implications for sub-basin-level vulnerability to flood peak generation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2797-2829, July.
    19. Xiaoyan Zhai & Liang Guo & Ronghua Liu & Yongyong Zhang & Yongqiang Zhang, 2021. "Comparing Three Hydrological Models for Flash Flood Simulations in 13 Humid and Semi-humid Mountainous Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1547-1571, March.
    20. Dimitrios Katsanos & Adrianos Retalis & Filippos Tymvios & Silas Michaelides, 2016. "Analysis of precipitation extremes based on satellite (CHIRPS) and in situ dataset over Cyprus," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 53-63, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:5:d:10.1007_s11269-022-03106-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.