IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i15p11965-d1210043.html
   My bibliography  Save this article

Gridded Precipitation Datasets and Gauge Precipitation Products for Driving Hydrological Models in the Dead Sea Region, Jordan

Author

Listed:
  • Youssef Kassem

    (Department of Mechanical Engineering, Engineering Faculty, Near East University, 99138 Nicosia, Cyprus
    Department of Civil Engineering, Civil and Environmental Engineering Faculty, Near East University, 99138 Nicosia, Cyprus
    Energy, Environment, and Water Research Center, Near East University, 99138 Nicosia, Cyprus
    Engineering Faculty, Kyrenia University, 99138 Kyrenia, Cyprus)

  • Hüseyin Gökçekuş

    (Department of Civil Engineering, Civil and Environmental Engineering Faculty, Near East University, 99138 Nicosia, Cyprus
    Energy, Environment, and Water Research Center, Near East University, 99138 Nicosia, Cyprus
    Engineering Faculty, Kyrenia University, 99138 Kyrenia, Cyprus)

  • Nour Alijl

    (Department of Civil Engineering, Civil and Environmental Engineering Faculty, Near East University, 99138 Nicosia, Cyprus
    International Designers Company, Amman 11953, Jordan)

Abstract

The consistency of hydrological process modeling depends on reliable parameters and available long-term gauge data, which are frequently restricted within the Dead Sea/Jordan regions. This paper proposes a novel method of utilizing six satellite-based and reanalysis precipitation datasets, which are assessed, evaluated, and corrected, particularly for the cases of ungauged basins and poorly monitored regions, for the first time. Due to natural processes, catchments fluctuate dramatically annually and seasonally, making this a challenge. This variability, which is significantly impacted by topo-geomorphological and climatic variables within the basins themselves, leads to increased uncertainty in models and significant restrictions in terms of runoff forecasting. However, quality evaluations and bias corrections should be conducted before the application of satellite data. Moreover, the hydrological HEC-HMS model was utilized to predict the runoff under different loss methods. Furthermore, this loss method was used with an integrated model that might be efficiently employed when designing hydraulic structures requiring high reliability in predicting peak flows. The models’ performance was evaluated using R-squared (R 2 ), the root mean square error (RMSE), the mean absolute error (MAE), and Nash–Sutcliffe efficiency (NSE). In addition, these statistical metrics were implemented to quantitatively evaluate the data quality based on the observed data collected between 2015 and 2020. The results show that AgERA5 exhibited better agreement with the gauge precipitation data than other reanalysis precipitation and satellite-based datasets. The results demonstrate that the data quality of these products could be affected by observational bias, the spatial scale, and the retrieval method. Moreover, the SC loss method demonstrated satisfactory values for the R 2 , RMSE, NSE, and bias compared to the IC and GA loss, indicating its effectiveness in predicting peak flows and designing hydraulic structures that require high reliability. Overall, the study suggests that AgERA5 can provide better precipitation estimates for hydrological modeling in the Dead Sea region in Jordan. Moreover, integrating the SC, IC, and GA loss methods in hydraulic structure design can enhance prediction accuracy and reliability.

Suggested Citation

  • Youssef Kassem & Hüseyin Gökçekuş & Nour Alijl, 2023. "Gridded Precipitation Datasets and Gauge Precipitation Products for Driving Hydrological Models in the Dead Sea Region, Jordan," Sustainability, MDPI, vol. 15(15), pages 1-29, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11965-:d:1210043
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/15/11965/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/15/11965/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Omid Rahmati & Ali Haghizadeh & Hamid Reza Pourghasemi & Farhad Noormohamadi, 2016. "Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 1231-1258, June.
    2. Ravindra Kale & Bhabagrahi Sahoo, 2011. "Green-Ampt Infiltration Models for Varied Field Conditions: A Revisit," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3505-3536, November.
    3. Polo, J. & Martín, L. & Vindel, J.M., 2015. "Correcting satellite derived DNI with systematic and seasonal deviations: Application to India," Renewable Energy, Elsevier, vol. 80(C), pages 238-243.
    4. Eyad Abushandi & Broder Merkel, 2013. "Modelling Rainfall Runoff Relations Using HEC-HMS and IHACRES for a Single Rain Event in an Arid Region of Jordan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2391-2409, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandipta Debanshi & Swades Pal, 2020. "Assessing gully erosion susceptibility in Mayurakshi river basin of eastern India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 883-914, February.
    2. Gueymard, Christian A. & Bright, Jamie M. & Lingfors, David & Habte, Aron & Sengupta, Manajit, 2019. "A posteriori clear-sky identification methods in solar irradiance time series: Review and preliminary validation using sky imagers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 412-427.
    3. Psiloglou, B.E. & Kambezidis, H.D. & Kaskaoutis, D.G. & Karagiannis, D. & Polo, J.M., 2020. "Comparison between MRM simulations, CAMS and PVGIS databases with measured solar radiation components at the Methoni station, Greece," Renewable Energy, Elsevier, vol. 146(C), pages 1372-1391.
    4. Kourosh Shirani & Mehrdad Pasandi & Alireza Arabameri, 2018. "Landslide susceptibility assessment by Dempster–Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1379-1418, September.
    5. Wenlin Yuan & Lu Lu & Hanzhen Song & Xiang Zhang & Linjuan Xu & Chengguo Su & Meiqi Liu & Denghua Yan & Zening Wu, 2022. "Study on the Early Warning for Flash Flood Based on Random Rainfall Pattern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1587-1609, March.
    6. Nerea Martín-Raya & Jaime Díaz-Pacheco & Abel López-Díez & Pedro Dorta Antequera & Amílcar Cabrera, 2023. "A lava flow simulation experience oriented to disaster risk reduction, early warning systems and response during the 2021 volcanic eruption in Cumbre Vieja, La Palma," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 3331-3351, July.
    7. Qu Simin & Wang Tao & Bao Weimin & Shi Peng & Jiang Peng & Zhou Minmin & Yu Zhongbo, 2013. "Evaluating Infiltration Mechanisms Using Breakthrough Curve and Mean Residence Time," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4579-4590, October.
    8. Paredes, Paula & Trigo, Isabel & de Bruin, Henk & Simões, Nuno & Pereira, Luis S., 2021. "Daily grass reference evapotranspiration with Meteosat Second Generation shortwave radiation and reference ET products," Agricultural Water Management, Elsevier, vol. 248(C).
    9. Ali Azedou & Said Lahssini & Abdellatif Khattabi & Modeste Meliho & Nabil Rifai, 2021. "A Methodological Comparison of Three Models for Gully Erosion Susceptibility Mapping in the Rural Municipality of El Faid (Morocco)," Sustainability, MDPI, vol. 13(2), pages 1-30, January.
    10. Thelma Dede Baddoo & Zhijia Li & Yiqing Guan & Kenneth Rodolphe Chabi Boni & Isaac Kwesi Nooni, 2020. "Data-Driven Modeling and the Influence of Objective Function Selection on Model Performance in Limited Data Regions," IJERPH, MDPI, vol. 17(11), pages 1-26, June.
    11. Md. Monirul Islam & Shusuke Matsushita & Ryozo Noguchi & Tofael Ahamed, 2022. "A damage-based crop insurance system for flash flooding: a satellite remote sensing and econometric approach," Asia-Pacific Journal of Regional Science, Springer, vol. 6(1), pages 47-89, February.
    12. João Perdigão & Paulo Canhoto & Rui Salgado & Maria João Costa, 2020. "Assessment of Direct Normal Irradiance Forecasts Based on IFS/ECMWF Data and Observations in the South of Portugal," Forecasting, MDPI, vol. 2(2), pages 1-21, May.
    13. Kennedy Were & Syphyline Kebeney & Harrison Churu & James Mumo Mutio & Ruth Njoroge & Denis Mugaa & Boniface Alkamoi & Wilson Ng’etich & Bal Ram Singh, 2023. "Spatial Prediction and Mapping of Gully Erosion Susceptibility Using Machine Learning Techniques in a Degraded Semi-Arid Region of Kenya," Land, MDPI, vol. 12(4), pages 1-19, April.
    14. Bijarniya, Jay Prakash & Sudhakar, K. & Baredar, Prashant, 2016. "Concentrated solar power technology in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 593-603.
    15. Tabasum Rasool & A. Q. Dar & M. A. Wani, 2021. "Development of a Predictive Equation for Modelling the Infiltration Process Using Gene Expression Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1871-1888, April.
    16. Giulia Sofia & Paolo Tarolli, 2017. "Hydrological Response to ~30 years of Agricultural Surface Water Management," Land, MDPI, vol. 6(1), pages 1-24, January.
    17. Qiang Fu & Long-Bin Lu & Jin-Bai Huang, 2014. "Numerical Analysis of Surface Runoff for the Liudaogou Drainage Basin in the North Loess Plateau, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4809-4822, October.
    18. Ionut Cristi Nicu & Alin Mihu-Pintilie & James Williamson, 2019. "GIS-Based and Statistical Approaches in Archaeological Predictive Modelling (NE Romania)," Sustainability, MDPI, vol. 11(21), pages 1-13, October.
    19. Rajeev Ranjan & Pankaj R. Dhote & Praveen K. Thakur & Shiv P. Aggarwal, 2022. "Investigation of basin characteristics: Implications for sub-basin-level vulnerability to flood peak generation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2797-2829, July.
    20. Vamvakas, Ioannis & Salamalikis, Vasileios & Benitez, Daniel & Al-Salaymeh, Ahmed & Bouaichaoui, Sofiane & Yassaa, Noureddine & Guizani, AmenAllah & Kazantzidis, Andreas, 2020. "Estimation of global horizontal irradiance using satellite-derived data across Middle East-North Africa: The role of aerosol optical properties and site-adaptation methodologies," Renewable Energy, Elsevier, vol. 157(C), pages 312-331.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11965-:d:1210043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.