IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i3d10.1007_s11269-022-03065-9.html
   My bibliography  Save this article

Bivariate Simulation of Potential Evapotranspiration Using Copula-GARCH Model

Author

Listed:
  • Mohammad Nazeri-Tahroudi

    (University of Birjand)

  • Yousef Ramezani

    (University of Birjand)

  • Carlo Michele

    (Politecnico Di Milano)

  • Rasoul Mirabbasi

    (Shahrekord University)

Abstract

Developing statistical period and simulating the required values in case of data shortage increases certainty and reliability of simulations and statistical analyses, which is very important in studies on hydrology and water resources. Therefore, in this study, for simulating values of potential evapotranspiration at Birjand Station located in eastern Iran, contemporaneous autoregressive moving average (CARMA), CARMA-generalized autoregressive conditional heteroskedasticity (GARCH), and Copula-GARCH models were used in statistical period of 1984–2019. The potential evapotranspiration and relative humidity time series were simulated using these three models. CARMA model has acceptable accuracy for simulating potential evapotranspiration values due to the effect of the second parameter on simulations. Nash–Sutcliffe efficiency (NSE) coefficient of CARMA model for simulating potential evapotranspiration values was estimated as 0.85. NSE coefficient of CARMA-GARCH model was obtained as 0.87 through extracting residuals of CARMA model and simulating variance of data using GARCH model. Comparing the CARMA and CARMA-GARCH models with each other, it was concluded that a combination of two linear and non-linear time series models increases simulation accuracy to some extent. Using Clayton copula (the selected copula from the studied copulas), the mentioned values were simulated by Copula-GARCH model. The results showed that among the three models used, Copula-GARCH model reduced root mean square error of bivariate simulation compared to CARMA and CARMA-GARCH models by 15 and 13%, respectively. The results also showed that the proposed model simulates the average, first, and third quarters and range of changes in the data by 5 and 95% better than the two CARMA and CARMA-GARCH models.

Suggested Citation

  • Mohammad Nazeri-Tahroudi & Yousef Ramezani & Carlo Michele & Rasoul Mirabbasi, 2022. "Bivariate Simulation of Potential Evapotranspiration Using Copula-GARCH Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 1007-1024, February.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:3:d:10.1007_s11269-022-03065-9
    DOI: 10.1007/s11269-022-03065-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03065-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03065-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Christian M. Hafner & Hans Manner, 2012. "Dynamic stochastic copula models: estimation, inference and applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(2), pages 269-295, March.
    3. Christos Floros & Shabbar Jaffry & Goncalo Valle Lima, 2007. "Long memory in the Portuguese stock market," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 24(3), pages 220-232, August.
    4. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    5. Ming Zhong & Ting Zeng & Tao Jiang & Huan Wu & Xiaohong Chen & Yang Hong, 2021. "A Copula-Based Multivariate Probability Analysis for Flash Flood Risk under the Compound Effect of Soil Moisture and Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 83-98, January.
    6. Mohammad Nazeri Tahroudi & Yousef Ramezani & Carlo De Michele & Rasoul Mirabbasi, 2020. "A New Method for Joint Frequency Analysis of Modified Precipitation Anomaly Percentage and Streamflow Drought Index Based on the Conditional Density of Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4217-4231, October.
    7. Toshiaki Watanabe, 2012. "Quantile Forecasts Of Financial Returns Using Realized Garch Models," The Japanese Economic Review, Japanese Economic Association, vol. 63(1), pages 68-80, March.
    8. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
    9. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Nazeri Tahroudi & Rasoul Mirabbasi & Yousef Ramezani & Farshad Ahmadi, 2022. "Probabilistic Assessment of Monthly River Discharge using Copula and OSVR Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2027-2043, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Nazeri Tahroudi & Rasoul Mirabbasi & Yousef Ramezani & Farshad Ahmadi, 2022. "Probabilistic Assessment of Monthly River Discharge using Copula and OSVR Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2027-2043, April.
    2. Anandadeep Mandal & Sunil S. Poshakwale & Gabriel J. Power, 2021. "Do investors gain from forecasting the asymmetric return co‐movements of financial and real assets?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3246-3268, July.
    3. Chao Wang & Richard Gerlach, 2021. "A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting," Papers 2106.00288, arXiv.org, revised Oct 2022.
    4. Nguyen, Hoang & Virbickaitė, Audronė, 2023. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Energy Economics, Elsevier, vol. 124(C).
    5. Yang (Greg) Hou & Mark Holmes, 2020. "Do higher order moments of return distribution provide better decisions in minimum-variance hedging? Evidence from US stock index futures," Australian Journal of Management, Australian School of Business, vol. 45(2), pages 240-265, May.
    6. Dahiru A. Balaa & Taro Takimotob, 2017. "Stock markets volatility spillovers during financial crises: A DCC-MGARCH with skewed-t density approach," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 17(1), pages 25-48, March.
    7. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2014. "Realized volatility models and alternative Value-at-Risk prediction strategies," Economic Modelling, Elsevier, vol. 40(C), pages 101-116.
    8. Do, A. & Powell, R. & Yong, J. & Singh, A., 2020. "Time-varying asymmetric volatility spillover between global markets and China’s A, B and H-shares using EGARCH and DCC-EGARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    9. Audrone Virbickaite & M. Concepción Ausín & Pedro Galeano, 2015. "Bayesian Inference Methods For Univariate And Multivariate Garch Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 76-96, February.
    10. Lumengo Bonga-Bonga & Tebogo Maake, 2021. "The Relationship between Carry Trade and Asset Markets in South Africa," JRFM, MDPI, vol. 14(7), pages 1-13, July.
    11. Biswajit Patra & Puja Padhi, 2015. "Backtesting of Value at Risk Methodology: Analysis of Banking Shares in India," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 9(3), pages 254-277, August.
    12. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    13. Zexuan Yin & Paolo Barucca, 2022. "Variational Heteroscedastic Volatility Model," Papers 2204.05806, arXiv.org.
    14. Yun-Shi Dai & Peng-Fei Dai & Wei-Xing Zhou, 2024. "The impact of geopolitical risk on the international agricultural market: Empirical analysis based on the GJR-GARCH-MIDAS model," Papers 2404.01641, arXiv.org.
    15. So, Mike K.P. & Chan, Thomas W.C. & Chu, Amanda M.Y., 2022. "Efficient estimation of high-dimensional dynamic covariance by risk factor mapping: Applications for financial risk management," Journal of Econometrics, Elsevier, vol. 227(1), pages 151-167.
    16. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.
    17. Apostolos Serletis & Maksim Isakin, 2017. "Stochastic volatility demand systems," Econometric Reviews, Taylor & Francis Journals, vol. 36(10), pages 1111-1122, November.
    18. Liu, Xiaochun, 2015. "Modeling time-varying skewness via decomposition for out-of-sample forecast," International Journal of Forecasting, Elsevier, vol. 31(2), pages 296-311.
    19. Takashi Isogai, 2015. "An Empirical Study of the Dynamic Correlation of Japanese Stock Returns," Bank of Japan Working Paper Series 15-E-7, Bank of Japan.
    20. Bladt, Martin & McNeil, Alexander J., 2022. "Time series copula models using d-vines and v-transforms," Econometrics and Statistics, Elsevier, vol. 24(C), pages 27-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:3:d:10.1007_s11269-022-03065-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.