IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i14p5037-5054.html
   My bibliography  Save this article

Estimation of Water Resources Availability and Mini-Hydro Productivity in High-Altitude Scarcely-Gauged Watershed

Author

Listed:
  • Muhammad Azmat
  • Francesco Laio
  • Davide Poggi

Abstract

Streamflow prediction in high-altitude scarcely-gauged catchments is essential for efficient water resources management and hydropower generation. Aim of this study is to estimate water resources availability (WRA) by the application of a standard rainfall-runoff model and to study its impact on mini-hydropower production with application to Mangla basin. The Mangla basin is a scarcely gauged catchment situated in the snow- and glacier-fed Himalayan and Pir Panjal Range. Daily streamflow forecasting has been performed by the application of a GIS (Geographic Information System) based hydrological modeling system (HEC-HMS) with observed and TRMM (Tropical Rainfall Measuring Mission) rainfall data to cover the ungauged part of the catchment. The obtained results suggest that HEC-HMS can efficiently reproduce daily streamflows in snow-fed glacierized catchments with Nash-Sutcliffe (NS) coefficients in the range 0.71–0.80. The WRA was estimated at the Mangla dam to analyze its impact on mini-hydropower generation at Upper Jhelum Canal (UJC). The gross mini-hydropower potential energy on the UJC was found to be 196 and 360 GWH for average and design discharge, respectively, demonstrated that mini-hydro power generation could be a significant addition for the energy sector of Pakistan. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Muhammad Azmat & Francesco Laio & Davide Poggi, 2015. "Estimation of Water Resources Availability and Mini-Hydro Productivity in High-Altitude Scarcely-Gauged Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5037-5054, November.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:14:p:5037-5054
    DOI: 10.1007/s11269-015-1102-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-015-1102-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-015-1102-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meiyan Yu & Xi Chen & Lanhai Li & Anming Bao & Mupenzi Paix, 2011. "Streamflow Simulation by SWAT Using Different Precipitation Sources in Large Arid Basins with Scarce Raingauges," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2669-2681, September.
    2. Murat Cobaner & Tefaruk Haktanir & Ozgur Kisi, 2008. "Prediction of Hydropower Energy Using ANN for the Feasibility of Hydropower Plant Installation to an Existing Irrigation Dam," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(6), pages 757-774, June.
    3. Pascal Hänggi & Rolf Weingartner, 2012. "Variations in Discharge Volumes for Hydropower Generation in Switzerland," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1231-1252, March.
    4. Magdalena Crisci & Rafael Terra, 2014. "Valorization of Irrigation Water in A Basin with Large Hydropower Production through Coupled Hydrological and Electric System Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 605-623, February.
    5. Eyad Abushandi & Broder Merkel, 2013. "Modelling Rainfall Runoff Relations Using HEC-HMS and IHACRES for a Single Rain Event in an Arid Region of Jordan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2391-2409, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yumeng Yang & Juan Du & Linlin Cheng & Wei Xu, 2017. "Applicability of TRMM satellite precipitation in driving hydrological model for identifying flood events: a case study in the Xiangjiang River Basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1489-1505, July.
    2. Muhammad Adnan Shahid & Piero Boccardo & Muhammad Usman & Adriana Albanese & Muhammad Uzair Qamar, 2017. "Predicting Peak Flows in Real Time through Event Based Hydrologic Modeling for a Trans-Boundary River Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 793-810, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schaefli, Bettina & Manso, Pedro & Fischer, Mauro & Huss, Matthias & Farinotti, Daniel, 2017. "The role of glacier retreat for Swiss hydropower production," Earth Arxiv 7z96d, Center for Open Science.
    2. Jairo Diaz-Ramirez & William McAnally & James Martin, 2012. "Sensitivity of Simulating Hydrologic Processes to Gauge and Radar Rainfall Data in Subtropical Coastal Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3515-3538, September.
    3. Wenlin Yuan & Lu Lu & Hanzhen Song & Xiang Zhang & Linjuan Xu & Chengguo Su & Meiqi Liu & Denghua Yan & Zening Wu, 2022. "Study on the Early Warning for Flash Flood Based on Random Rainfall Pattern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1587-1609, March.
    4. Handriyanti Diah Puspitarini & Baptiste François & Marco Baratieri & Casey Brown & Mattia Zaramella & Marco Borga, 2020. "Complementarity between Combined Heat and Power Systems, Solar PV and Hydropower at a District Level: Sensitivity to Climate Characteristics along an Alpine Transect," Energies, MDPI, vol. 13(16), pages 1-19, August.
    5. Jonas Savelsberg & Moritz Schillinger & Ingmar Schlecht & Hannes Weigt, 2018. "The Impact of Climate Change on Swiss Hydropower," Sustainability, MDPI, vol. 10(7), pages 1-23, July.
    6. Peng Shi & Miao Wu & Simin Qu & Peng Jiang & Xueyuan Qiao & Xi Chen & Mi Zhou & Zhicai Zhang, 2015. "Spatial Distribution and Temporal Trends in Precipitation Concentration Indices for the Southwest China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 3941-3955, September.
    7. Baptiste François & Benoit Hingray & Marco Borga & Davide Zoccatelli & Casey Brown & Jean-Dominique Creutin, 2018. "Impact of Climate Change on Combined Solar and Run-of-River Power in Northern Italy," Energies, MDPI, vol. 11(2), pages 1-22, January.
    8. Anand Verdhen & Bhagu Chahar & Om Sharma, 2014. "Snowmelt Modelling Approaches in Watershed Models: Computation and Comparison of Efficiencies under Varying Climatic Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3439-3453, September.
    9. Emanuele Ogliari & Alfredo Nespoli & Marco Mussetta & Silvia Pretto & Andrea Zimbardo & Nicholas Bonfanti & Manuele Aufiero, 2020. "A Hybrid Method for the Run-Of-The-River Hydroelectric Power Plant Energy Forecast: HYPE Hydrological Model and Neural Network," Forecasting, MDPI, vol. 2(4), pages 1-19, October.
    10. Thelma Dede Baddoo & Zhijia Li & Yiqing Guan & Kenneth Rodolphe Chabi Boni & Isaac Kwesi Nooni, 2020. "Data-Driven Modeling and the Influence of Objective Function Selection on Model Performance in Limited Data Regions," IJERPH, MDPI, vol. 17(11), pages 1-26, June.
    11. Fernandes, Gláucia & Gomes, Leonardo Lima & Brandão, Luiz Eduardo Teixeira, 2018. "A risk-hedging tool for hydro power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 370-378.
    12. Schaefli, Bettina & Manso, Pedro & Fischer, Mauro & Huss, Matthias & Farinotti, Daniel, 2019. "The role of glacier retreat for Swiss hydropower production," Renewable Energy, Elsevier, vol. 132(C), pages 615-627.
    13. Patro, Epari Ritesh & De Michele, Carlo & Avanzi, Francesco, 2018. "Future perspectives of run-of-the-river hydropower and the impact of glaciers’ shrinkage: The case of Italian Alps," Applied Energy, Elsevier, vol. 231(C), pages 699-713.
    14. Richard Arsenault & François Brissette & Jean-Stéphane Malo & Marie Minville & Robert Leconte, 2013. "Structural and Non-Structural Climate Change Adaptation Strategies for the Péribonka Water Resource System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2075-2087, May.
    15. Kucukali, Serhat & Al Bayatı, Omar & Maraş, H. Hakan, 2021. "Finding the most suitable existing irrigation dams for small hydropower development in Turkey: A GIS-Fuzzy logic tool," Renewable Energy, Elsevier, vol. 172(C), pages 633-650.
    16. Md Mijanur Rahman & Mohammad Shakeri & Sieh Kiong Tiong & Fatema Khatun & Nowshad Amin & Jagadeesh Pasupuleti & Mohammad Kamrul Hasan, 2021. "Prospective Methodologies in Hybrid Renewable Energy Systems for Energy Prediction Using Artificial Neural Networks," Sustainability, MDPI, vol. 13(4), pages 1-28, February.
    17. François, B. & Zoccatelli, D. & Borga, M., 2017. "Assessing small hydro/solar power complementarity in ungauged mountainous areas: A crash test study for hydrological prediction methods," Energy, Elsevier, vol. 127(C), pages 716-729.
    18. Akansha Kushwaha & Manoj Jain, 2013. "Hydrological Simulation in a Forest Dominated Watershed in Himalayan Region using SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3005-3023, June.
    19. Qiang Fu & Long-Bin Lu & Jin-Bai Huang, 2014. "Numerical Analysis of Surface Runoff for the Liudaogou Drainage Basin in the North Loess Plateau, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4809-4822, October.
    20. Rajeev Ranjan & Pankaj R. Dhote & Praveen K. Thakur & Shiv P. Aggarwal, 2022. "Investigation of basin characteristics: Implications for sub-basin-level vulnerability to flood peak generation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2797-2829, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:14:p:5037-5054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.