IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i10d10.1007_s11269-018-1990-9.html
   My bibliography  Save this article

Hydrological Environmental Responses of LID and Approach for Rainfall Pattern Selection in Precipitation Data-Lacked Region

Author

Listed:
  • Jiake Li

    (Xi’an University of Technology)

  • Chenning Deng

    (Xi’an University of Technology)

  • Huaien Li

    (Xi’an University of Technology)

  • Menghua Ma

    (Xi’an University of Technology)

  • Yajiao Li

    (Xi’an University of Science and Technology)

Abstract

Global climate change and urbanization development have changed the hydrological environment dramatically. Flood control, non-point source pollution control, and comprehensive utilization of water resources are facing new challenges. On the basis of the Storm Water Management Model (SWMM), an approach for design rainfall pattern selection in precipitation data-lacked region containing model establishing, response analysis and design rainfall pattern screening was put forward. And the responses of the hydrologic, hydraulic and environmental of 2-commercial community mode are explored by using a simulation analysis under different rainfall patterns in this study. Based on the worst principle, the Chicago rainfall pattern was selected for the above-mentioned evaluation indexes at different reoccurrence periods. Results showed that, (1) in traditional development (TD), the values of surface runoff, peak flow and depth of outlet, and total pollution loading were at their maximum at the Chicago rainfall pattern; and in low-impact development (LID), the reduction rates of surface runoff and total pollution loading were at their minimum at the Huff4 rainfall pattern, and the reduction rate of peak flow was at its minimum at the P&C rainfall pattern; then design storm patterns at different simulation targets were obtained. (2) For the Chicago rainfall pattern, the reduction rates of various evaluation indexes decreased while the reoccurrence period increased, and the reduction rate of peak flow was more sensitive to high reoccurrence period rainfall than surface runoff. (3) After the setting of LID measures, the control effect of storm water and non-point source pollution gathered better results from the increase of permeable area and the change of microtopography, as well as from the physical and biological action. This study will provide a reference for the selection of design storm pattern at different simulation targets in regions with deficient rainfall data.

Suggested Citation

  • Jiake Li & Chenning Deng & Huaien Li & Menghua Ma & Yajiao Li, 2018. "Hydrological Environmental Responses of LID and Approach for Rainfall Pattern Selection in Precipitation Data-Lacked Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3271-3284, August.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:10:d:10.1007_s11269-018-1990-9
    DOI: 10.1007/s11269-018-1990-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-1990-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-1990-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amin Owrangi & Robert Lannigan & Slobodan Simonovic, 2014. "Interaction between land-use change, flooding and human health in Metro Vancouver, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 1219-1230, June.
    2. S. K. Aryal & S. Ashbolt & B. S. McIntosh & K. P. Petrone & S. Maheepala & R. K. Chowdhury & T. Gardener & R. Gardiner, 2016. "Assessing and Mitigating the Hydrological Impacts of Urbanisation in Semi-Urban Catchments Using the Storm Water Management Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5437-5454, November.
    3. Mao, Xuhui & Jia, Haifeng & Yu, Shaw L., 2017. "Assessing the ecological benefits of aggregate LID-BMPs through modelling," Ecological Modelling, Elsevier, vol. 353(C), pages 139-149.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Priscila Celebrini de Oliveira Campos & Tainá da Silva Rocha Paz & Letícia Lenz & Yangzi Qiu & Camila Nascimento Alves & Ana Paula Roem Simoni & José Carlos Cesar Amorim & Gilson Brito Alves Lima & Ma, 2020. "Multi-Criteria Decision Method for Sustainable Watercourse Management in Urban Areas," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
    2. Wenlin Yuan & Lu Lu & Hanzhen Song & Xiang Zhang & Linjuan Xu & Chengguo Su & Meiqi Liu & Denghua Yan & Zening Wu, 2022. "Study on the Early Warning for Flash Flood Based on Random Rainfall Pattern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1587-1609, March.
    3. Xianqi Zhang & Kai Wang & Tao Wang, 2021. "SWMM-Based Assessment of the Improvement of Hydrodynamic Conditions of Urban Water System Connectivity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4519-4534, October.
    4. Zongjia Zhang & Yiping Zeng & Zhejun Huang & Junguo Liu & Lili Yang, 2023. "Multi-Source Data Fusion and Hydrodynamics for Urban Waterlogging Risk Identification," IJERPH, MDPI, vol. 20(3), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu-Wei Wang & Ye-Shuang Xu, 2022. "Investigation on the phenomena and influence factors of urban ground collapse in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 1-33, August.
    2. Huafei Yu & Yaolong Zhao & Yingchun Fu, 2019. "Optimization of Impervious Surface Space Layout for Prevention of Urban Rainstorm Waterlogging: A Case Study of Guangzhou, China," IJERPH, MDPI, vol. 16(19), pages 1-28, September.
    3. Xiaoyan Bai & Wen Shen & Peng Wang & Xiaohong Chen & Yanhu He, 2020. "Response of Non-point Source Pollution Loads to Land Use Change under Different Precipitation Scenarios from a Future Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 3987-4002, October.
    4. Priscila Celebrini de Oliveira Campos & Tainá da Silva Rocha Paz & Letícia Lenz & Yangzi Qiu & Camila Nascimento Alves & Ana Paula Roem Simoni & José Carlos Cesar Amorim & Gilson Brito Alves Lima & Ma, 2020. "Multi-Criteria Decision Method for Sustainable Watercourse Management in Urban Areas," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
    5. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Yongwei Gong & Yan Hao & Junqi Li & Haiyan Li & Zhenyao Shen & Wenhai Wang & Sisi Wang, 2019. "The Effects of Rainfall Runoff Pollutants on Plant Physiology in a Bioretention System Based on Pilot Experiments," Sustainability, MDPI, vol. 11(22), pages 1-16, November.
    7. Ireneusz Nowogoński, 2021. "Runoff Volume Reduction Using Green Infrastructure," Land, MDPI, vol. 10(3), pages 1-24, March.
    8. Chunlin Li & Miao Liu & Yuanman Hu & Rongqing Han & Tuo Shi & Xiuqi Qu & Yilin Wu, 2018. "Evaluating the Hydrologic Performance of Low Impact Development Scenarios in a Micro Urban Catchment," IJERPH, MDPI, vol. 15(2), pages 1-14, February.
    9. Bartosz Szeląg & Roman Suligowski & Grzegorz Majewski & Przemysław Kowal & Adrian Bralewski & Karolina Bralewska & Ewa Anioł & Wioletta Rogula-Kozłowska & Francesco Paola, 2022. "Application of Multinomial Logistic Regression to Model the Impact of Rainfall Genesis on the Performance of Storm Overflows: Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3699-3714, August.
    10. Dudley Saunders & John Martin, 2022. "The Role of Green Infrastructure in Pluvial Flood Management and the Legislation Surrounding It: A Case Study in Bristol, UK," Sustainability, MDPI, vol. 14(21), pages 1-16, November.
    11. Kun Xie & Yanfeng He & Jong-Suk Kim & Sun-Kwon Yoon & Jie Liu & Hua Chen & Jung Hwan Lee & Xiang Zhang & Chong-Yu Xu, 2023. "Assessment of the Joint Impact of Rainfall Characteristics on Urban Flooding and Resilience Using the Copula Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1765-1784, March.
    12. Jian Wang & Fei Xue & Ruiying Jing & Qiaohui Lu & Yilong Huang & Xiang Sun & Wenbo Zhu, 2021. "Regenerating Sponge City to Sponge Watershed through an Innovative Framework for Urban Water Resilience," Sustainability, MDPI, vol. 13(10), pages 1-36, May.
    13. Darshan Anil Sansare & Sumedh Yamaji Mhaske, 2020. "Natural hazard assessment and mapping using remote sensing and QGIS tools for Mumbai city, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(3), pages 1117-1136, February.
    14. Amirhossein Nazari & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany, 2023. "Integrated SUSTAIN-SWMM-MCDM Approach for Optimal Selection of LID Practices in Urban Stormwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3769-3793, July.
    15. Mariusz Starzec & Józef Dziopak & Daniel Słyś, 2020. "An Analysis of Stormwater Management Variants in Urban Catchments," Resources, MDPI, vol. 9(2), pages 1-17, February.
    16. Jong Mun Lee & Minji Park & Joong-Hyuk Min & Jinsun Kim & Jimin Lee & Heeseon Jang & Eun Hye Na, 2022. "Evaluation of SWMM-LID Modeling Applicability Considering Regional Characteristics for Optimal Management of Non-Point Pollutant Sources," Sustainability, MDPI, vol. 14(21), pages 1-16, November.
    17. Shanshan Hu & Yunyun Fan & Tao Zhang, 2020. "Assessing the Effect of Land Use Change on Surface Runoff in a Rapidly Urbanized City: A Case Study of the Central Area of Beijing," Land, MDPI, vol. 9(1), pages 1-15, January.
    18. P. E. Zope & T. I. Eldho & V. Jothiprakash, 2017. "Hydrological impacts of land use–land cover change and detention basins on urban flood hazard: a case study of Poisar River basin, Mumbai, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1267-1283, July.
    19. Chris G. Buse & Aita Bezzola & Jordan Brubacher & Tim K. Takaro & Arthur L. Fredeen & Margot W. Parkes, 2022. "Cumulative Impacts of Diverse Land Uses in British Columbia, Canada: Application of the “EnviroScreen” Method," IJERPH, MDPI, vol. 19(18), pages 1-17, September.
    20. Jiake Li & Chenning Deng & Ya Li & Yajiao Li & Jinxi Song, 2017. "Comprehensive Benefit Evaluation System for Low-Impact Development of Urban Stormwater Management Measures," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4745-4758, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:10:d:10.1007_s11269-018-1990-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.