IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i14d10.1007_s11269-021-02975-4.html
   My bibliography  Save this article

Method for Analyzing Copula-Based Water Shortage Risk in Multisource Water Supply Cities

Author

Listed:
  • Chen An

    (Zhengzhou University)

  • Ming Dou

    (Zhengzhou University
    Zhengzhou University)

  • Jianling Zhang

    (Construction and Administration Bureau of Middle Route Project of South-To-North Water Diversion)

  • Guiqiu Li

    (Zhengzhou University)

Abstract

Based on the data series location water, Yellow River water, and the South-to-North Water Diversion water which were obtained from 1985 to 2017 in Zhengzhou, China, a joint probability distribution (JPD) model and encounter probability (EP) were established using the optimized t-copula function. The EP was combined, and a risk analysis was performed based on the water shortage situation of each user in different encounters. The results showed that (1) the trivariate JPD could reflect the probability of multisource water supply more precisely than the bivariate JPD; (2) the asynchronous EP was 76.6%, higher than the synchronous EP by 53.2%, indicating that the three water sources were complementary, and the local water exhibited the most significant impact on water supply system in Zhengzhou; and (3) the maximum EP for S1 was 11.7%, all users in S27 experienced varying degrees of water shortage, and the domestic water shortage was (−0.271, −0.33) billion m3. The reservoirs should be converted into joint dispatch, and water rights trading and other water resource management measures should be adopted. The amount of extracted groundwater may be increased if necessary to maintain the urban water supply system.

Suggested Citation

  • Chen An & Ming Dou & Jianling Zhang & Guiqiu Li, 2021. "Method for Analyzing Copula-Based Water Shortage Risk in Multisource Water Supply Cities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4877-4894, November.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:14:d:10.1007_s11269-021-02975-4
    DOI: 10.1007/s11269-021-02975-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-02975-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-02975-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu Zening & He Chentao & Huiliang Wang & Qian Zhang, 2020. "Reservoir Inflow Synchronization Analysis for Four Reservoirs on a Mainstream and its Tributaries in Flood Season Based on a Multivariate Copula Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2753-2770, July.
    2. Ming Zhong & Ting Zeng & Tao Jiang & Huan Wu & Xiaohong Chen & Yang Hong, 2021. "A Copula-Based Multivariate Probability Analysis for Flash Flood Risk under the Compound Effect of Soil Moisture and Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 83-98, January.
    3. Ying Li & Wei Gu & Weijia Cui & Zhiyun Chang & Yingjun Xu, 2015. "Exploration of copula function use in crop meteorological drought risk analysis: a case study of winter wheat in Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1289-1303, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Milan Stojković & Ana Mijić & Barnaby Dobson & Dušan Marjanović & Brankica Majkić-Dursun, 2024. "Novel Perspectives on Environmental Dynamic Resilience: Adapting Urban Water Systems to a Changing Climate," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(12), pages 4455-4472, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Longxia Qian & Yong Zhao & Jianhong Yang & Hanlin Li & Hongrui Wang & ChengZu Bai, 2022. "A New Estimation Method for Copula Parameters for Multivariate Hydrological Frequency Analysis With Small Sample Sizes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1141-1157, March.
    2. Li, Pei & Huang, Qiang & Huang, Shengzhi & Leng, Guoyong & Peng, Jian & Wang, Hao & Zheng, Xudong & Li, Yifei & Fang, Wei, 2022. "Various maize yield losses and their dynamics triggered by drought thresholds based on Copula-Bayesian conditional probabilities," Agricultural Water Management, Elsevier, vol. 261(C).
    3. Fatih Tosunoglu & Ibrahim Can, 2016. "Application of copulas for regional bivariate frequency analysis of meteorological droughts in Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1457-1477, July.
    4. Wenlin Yuan & Lu Lu & Hanzhen Song & Xiang Zhang & Linjuan Xu & Chengguo Su & Meiqi Liu & Denghua Yan & Zening Wu, 2022. "Study on the Early Warning for Flash Flood Based on Random Rainfall Pattern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1587-1609, March.
    5. Mohammad Nazeri-Tahroudi & Yousef Ramezani & Carlo Michele & Rasoul Mirabbasi, 2022. "Bivariate Simulation of Potential Evapotranspiration Using Copula-GARCH Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 1007-1024, February.
    6. Liping Wang & Xingnan Zhang & Shufang Wang & Mohamed Khaled Salahou & Yuanhao Fang, 2020. "Analysis and Application of Drought Characteristics Based on Theory of Runs and Copulas in Yunnan, Southwest China," IJERPH, MDPI, vol. 17(13), pages 1-17, June.
    7. Qian Li & Liutong Chen & Zhengtao Yan & Yingjun Xu, 2022. "Exploration of Copula Models Use in Risk Assessment for Freezing and Snow Events: A Case Study in Southern China," Sustainability, MDPI, vol. 14(5), pages 1-12, February.
    8. Chao Zhang & Changming Ji & Yi Wang & Qian Xiao, 2022. "Flood hydrograph coincidence analysis of the upper Yangtze River and Dongting Lake, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1339-1360, January.
    9. Raissa Zurli Bittencourt Bravo & Ana Paula Martins do Amaral Cunha & Adriana Leiras & Fernando Luiz Cyrino Oliveira, 2021. "A new approach for a drought composite index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 755-773, August.
    10. Homa Razmkhah & Alireza Fararouie & Amin Rostami Ravari, 2022. "Multivariate Flood Frequency Analysis Using Bivariate Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 729-743, January.
    11. Poornima Unnikrishnan & Kumaraswamy Ponnambalam & Nirupama Agrawal & Fakhri Karray, 2023. "Joint Flood Risks in the Grand River Watershed," Sustainability, MDPI, vol. 15(12), pages 1-14, June.
    12. Mubenga-Tshitaka, Jean-Luc & Muteba Mwamba, John W. & Dikgang, Johane & Gelo, Dambala, 2021. "Risk spillover between climate variables and the agricultural commodity market in East Africa," EconStor Preprints 243160, ZBW - Leibniz Information Centre for Economics.
    13. Xiao Liu & Ping Guo & Qian Tan & Fan Zhang & Yan Huang & Youzhi Wang, 2021. "Drought disaster risk management based on optimal allocation of water resources," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 285-308, August.
    14. Ribeiro, Andreia F.S. & Russo, Ana & Gouveia, Célia M. & Páscoa, Patrícia, 2019. "Copula-based agricultural drought risk of rainfed cropping systems," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:14:d:10.1007_s11269-021-02975-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.