IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i12d10.1007_s11269-016-1421-8.html
   My bibliography  Save this article

Delineation of Groundwater Potential Zones of Coastal Groundwater Basin Using Multi-Criteria Decision Making Technique

Author

Listed:
  • Uday Mandal

    (ICAR-Indian Institute of Soil & Water Conservation)

  • Satiprasad Sahoo

    (Indian Institute of Technology Kharagpur)

  • Selva Balaji Munusamy

    (Indian Institute of Technology Kharagpur)

  • Anirban Dhar

    (Indian Institute of Technology Kharagpur)

  • Sudhindra N. Panda

    (Indian Institute of Technology Kharagpur)

  • Amlanjyoti Kar

    (CGWB)

  • Prasanta K. Mishra

    (ICAR-Indian Institute of Soil & Water Conservation Dehradun)

Abstract

Delineation of groundwater potential zones (GWPZ) has been performed for a coastal groundwater basin of eastern India. The groundwater potential zone index (GWPZI) map is generated by using Analytic Hierarchy Process (AHP) from different influencing features, e.g., Land Use/Land Cover (LU/LC), soil (S), geomorphology (GM), hydrogeology (HG), surface geology (SG), recharge rate (RR), drainage density (DD), rainfall (RF), slope (Sl), surface water bodies (SW), lineament density (LD), and Normalized Difference Vegetative Index (NDVI). Recharge rate values are estimated from hydrological water balance model. Overlay weighted sum method is used to integrate all thematic feature maps to generate GWPZ map of the study area. Four zones have been identified for the coastal groundwater basin [very good: 36.39 % (273.53 km2, good: 43.57 % (327.47 km2), moderate: 18.27 % (137.30 km2), and poor: 1.77 % (13.27 km2)]. Areas in north to south-west and south-east direction show very good GWPZ due to the presence of low drainage density. GWPZ map and well yield values show good agreement. Sensitivity analysis reveals that exclusion/absence of rainfall and lineament density increases the poor groundwater potential zones. Omission of hydrogeology, soils, surface geology, and NDVI show maximum increase in good GWPZ. Obtained GWPZ map can be utilized effectively for planning of sustainable agriculture. This analysis demonstrates the potential applicability of the methodology for a general coastal groundwater basin.

Suggested Citation

  • Uday Mandal & Satiprasad Sahoo & Selva Balaji Munusamy & Anirban Dhar & Sudhindra N. Panda & Amlanjyoti Kar & Prasanta K. Mishra, 2016. "Delineation of Groundwater Potential Zones of Coastal Groundwater Basin Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4293-4310, September.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:12:d:10.1007_s11269-016-1421-8
    DOI: 10.1007/s11269-016-1421-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1421-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1421-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shereif Mahmoud & A. Alazba & Amin T, 2014. "Identification of Potential Sites for Groundwater Recharge Using a GIS-Based Decision Support System in Jazan Region-Saudi Arabia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3319-3340, August.
    2. Rajat Agarwal & P. Garg, 2016. "Remote Sensing and GIS Based Groundwater Potential & Recharge Zones Mapping Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 243-260, January.
    3. Rajat Agarwal & P. K. Garg, 2016. "Remote Sensing and GIS Based Groundwater Potential & Recharge Zones Mapping Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 243-260, January.
    4. Prabir Mukherjee & Chander Singh & Saumitra Mukherjee, 2012. "Delineation of Groundwater Potential Zones in Arid Region of India—A Remote Sensing and GIS Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2643-2672, July.
    5. Ismail Chenini & Abdallah Mammou & Moufida El May, 2010. "Groundwater Recharge Zone Mapping Using GIS-Based Multi-criteria Analysis: A Case Study in Central Tunisia (Maknassy Basin)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 921-939, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Satiprasad Sahoo & Selva Balaji Munusamy & Anirban Dhar & Amlanjyoti Kar & Prahlad Ram, 2017. "Appraising the Accuracy of Multi-Class Frequency Ratio and Weights of Evidence Method for Delineation of Regional Groundwater Potential Zones in Canal Command System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4399-4413, November.
    2. Mandal, Uday & Dhar, Anirban & Panda, Sudhindra N., 2021. "Enhancement of sustainable agricultural production system by integrated natural resources management framework under climatic and operational uncertainty," Agricultural Water Management, Elsevier, vol. 252(C).
    3. Robyn Horan & Pawan S. Wable & Veena Srinivasan & Helen E. Baron & Virginie J. D. Keller & Kaushal K. Garg & Nathan Rickards & Mike Simpson & Helen A. Houghton-Carr & H. Gwyn Rees, 2021. "Modelling Small-Scale Storage Interventions in Semi-Arid India at the Basin Scale," Sustainability, MDPI, vol. 13(11), pages 1-28, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guigui Xu & Xiaosi Su & Yiwu Zhang & Bing You, 2021. "Identifying Potential Sites for Artificial Recharge in the Plain Area of the Daqing River Catchment Using GIS-Based Multi-Criteria Analysis," Sustainability, MDPI, vol. 13(7), pages 1-15, April.
    2. Duong Hai Ha & Phong Tung Nguyen & Romulus Costache & Nadhir Al-Ansari & Tran Phong & Huu Duy Nguyen & Mahdis Amiri & Rohit Sharma & Indra Prakash & Hiep Le & Hanh Bich Thi Nguyen & Binh Thai Pham, 2021. "Quadratic Discriminant Analysis Based Ensemble Machine Learning Models for Groundwater Potential Modeling and Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4415-4433, October.
    3. Shabnam Mehrnoor & Maryam Robati & Mir Masoud Kheirkhah Zarkesh & Forough Farsad & Shahram Baikpour, 2023. "Land subsidence hazard assessment based on novel hybrid approach: BWM, weighted overlay index (WOI), and support vector machine (SVM)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 1997-2030, February.
    4. Xue Wang & Kun Tan & Kailei Xu & Yu Chen & Jianwei Ding, 2019. "Quantitative Evaluation of the Eco-Environment in a Coalfield Based on Multi-Temporal Remote Sensing Imagery: A Case Study of Yuxian, China," IJERPH, MDPI, vol. 16(3), pages 1-18, February.
    5. Neslihan Beden & Nazire Göksu Soydan-Oksal & Sema Arıman & Hayatullah Ahmadzai, 2023. "Delineation of a Groundwater Potential Zone Map for the Kızılırmak Delta by Using Remote-Sensing-Based Geospatial and Analytical Hierarchy Processes," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    6. Senapati, Ujjal & Das, Tapan Kumar, 2024. "Delineation of potential alternative agriculture region using RS and AHP-based GIS techniques in the drought prone upper Dwarakeswer river basin, West Bengal, India," Ecological Modelling, Elsevier, vol. 490(C).
    7. Ting Liu & Sherong Zhang & Chao Wang, 2021. "A BIM-Based Safety Management Framework for Operation and Maintenance in Water Diversion Projects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1619-1635, March.
    8. Xinyang Liu & Yu Wang, 2022. "Identification and Assessment of Groundwater and Soil Contamination from an Informal Landfill Site," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    9. Pazhuparambil Jayarajan Sajil Kumar & Lakshmanan Elango & Michael Schneider, 2022. "GIS and AHP Based Groundwater Potential Zones Delineation in Chennai River Basin (CRB), India," Sustainability, MDPI, vol. 14(3), pages 1-22, February.
    10. Ujjayini Priya & Muhammad Anwar Iqbal & Mohammed Abdus Salam & Md. Nur-E-Alam & Mohammed Faruque Uddin & Abu Reza Md. Towfiqul Islam & Showmitra Kumar Sarkar & Saiful Islam Imran & Aweng Eh Rak, 2022. "Sustainable Groundwater Potential Zoning with Integrating GIS, Remote Sensing, and AHP Model: A Case from North-Central Bangladesh," Sustainability, MDPI, vol. 14(9), pages 1-24, May.
    11. Roshani Singh & Aditya Kumar Anand & Pallavi Banerjee Chattopadhyay, 2022. "Investigation of Topographical Controls on the Groundwater Potential Zone in a Hilly Watershed Using a Geospatial and Geophysical Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5313-5333, October.
    12. Imran Jamali & Ulla Mörtberg & Bo Olofsson & Muhammad Shafique, 2014. "A Spatial Multi-Criteria Analysis Approach for Locating Suitable Sites for Construction of Subsurface Dams in Northern Pakistan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5157-5174, November.
    13. Veysel Aslan & Recep Çelik, 2021. "Integrated GIS-Based Multi-Criteria Analysis for Groundwater Potential Mapping in the Euphrates’s Sub-Basin, Harran Basin, Turkey," Sustainability, MDPI, vol. 13(13), pages 1-16, July.
    14. Ciro Figueiredo & Caroline Mota, 2019. "Learning Preferences in a Spatial Multiple Criteria Decision Approach: An Application in Public Security Planning," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1403-1432, July.
    15. Sangita Dey & U. K. Shukla & P. Mehrishi & R. K. Mall, 2021. "Appraisal of groundwater potentiality of multilayer alluvial aquifers of the Varuna river basin, India, using two concurrent methods of MCDM," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17558-17589, December.
    16. Yong Ye & Wei Chen & Guirong Wang & Weifeng Xue, 2022. "Spatial Prediction of the Groundwater Potential Using Remote Sensing Data and Bivariate Statistical-Based Artificial Intelligence Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5461-5494, November.
    17. Amirhosein Mosavi & Farzaneh Sajedi Hosseini & Bahram Choubin & Massoud Goodarzi & Adrienn A. Dineva & Elham Rafiei Sardooi, 2021. "Ensemble Boosting and Bagging Based Machine Learning Models for Groundwater Potential Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 23-37, January.
    18. Hesham Morgan & Hussien M. Hussien & Ahmed Madani & Tamer Nassar, 2022. "Delineating Groundwater Potential Zones in Hyper-Arid Regions Using the Applications of Remote Sensing and GIS Modeling in the Eastern Desert, Egypt," Sustainability, MDPI, vol. 14(24), pages 1-30, December.
    19. Jha, Madan K. & Chowdary, V.M. & Kulkarni, Y. & Mal, B.C., 2014. "Rainwater harvesting planning using geospatial techniques and multicriteria decision analysis," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 96-111.
    20. Soumik Bhattacharya & Swarupa Das & Sandipan Das & Mahesh Kalashetty & Sumedh R. Warghat, 2021. "An integrated approach for mapping groundwater potential applying geospatial and MIF techniques in the semiarid region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 495-510, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:12:d:10.1007_s11269-016-1421-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.