IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16948-d1006571.html
   My bibliography  Save this article

Identification and Assessment of Groundwater and Soil Contamination from an Informal Landfill Site

Author

Listed:
  • Xinyang Liu

    (Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
    Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China)

  • Yu Wang

    (Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China)

Abstract

Landfills are a potential source of local environmental pollution of all kinds, and the gradual destruction of seepage-proof structures in informal landfills will lead to contamination of the surrounding soil and groundwater environment. In this study, an informal landfill site in eastern China is used as the research object. Using technologies such as unmanned vessels and monitoring well imaging to delineate the amount and distribution of polluting media, sampling of the surrounding soil, sediment, groundwater, and surface water for testing, analysis, and evaluation is carried out visually and finely for heavy metals, petroleum hydrocarbons, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and other indicators. The test results show that volatile phenols are the main contaminant species in the shallow groundwater, chlorinated hydrocarbons and benzene were prevalent in the deep groundwater, hexachlorobenzene and lead in the surface soil, and di(2-Ethylhexyl) phthalate in the deep soil (5.5 m), with a maximum exceedance of 1.24 times. Nearly 10 years have passed since the waste dumping incident at the landfill, but characteristic contaminants are still detected in the topsoil of the dumping area, which shows the long-term nature of the environmental impact of illegal dumping on the site. The study recommends that when developing a comprehensive remediation plan, the persistence of the environmental impact of the waste should be considered and appropriate remediation measures should be screened.

Suggested Citation

  • Xinyang Liu & Yu Wang, 2022. "Identification and Assessment of Groundwater and Soil Contamination from an Informal Landfill Site," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16948-:d:1006571
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16948/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16948/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sonja Cerar & Luka Serianz & Katja Koren & Joerg Prestor & Nina Mali, 2022. "Synoptic Risk Assessment of Groundwater Contamination from Landfills," Energies, MDPI, vol. 15(14), pages 1-17, July.
    2. Qin Yin & Haihong Yan & Xiaoya Guo & Yu Liang & Xingzhi Wang & Qian Yang & Shuqi Li & Xianqi Zhang & Yuexi Zhou & Yuegang Nian, 2020. "Remediation Technology and Typical Case Analysis of Informal Landfills in Rainy Areas of Southern China," IJERPH, MDPI, vol. 17(3), pages 1-13, January.
    3. Ye Yang & Chaokun Li & Zhiwen Chen & Yingying Dong & Nan Zhang & Yulu Wei & Hui Xi & Wendong Wang, 2022. "Characterization and Assessment of Organic Pollution at a Fumaric Acid Chemical Brownfield Site in Northwestern China," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    4. Justyna Szulc & Małgorzata Okrasa & Adriana Nowak & Joanna Nizioł & Tomasz Ruman & Sławomir Kuberski, 2022. "Assessment of Physicochemical, Microbiological and Toxicological Hazards at an Illegal Landfill in Central Poland," IJERPH, MDPI, vol. 19(8), pages 1-31, April.
    5. Arailym Kamal & Ardak Makhatova & Bakzhan Yergali & Aigerim Baidullayeva & Aliya Satayeva & Jong Kim & Vassilis J. Inglezakis & Stavros G. Poulopoulos & Elizabeth Arkhangelsky, 2022. "Biological Treatment, Advanced Oxidation and Membrane Separation for Landfill Leachate Treatment: A Review," Sustainability, MDPI, vol. 14(21), pages 1-32, November.
    6. Rajat Agarwal & P. Garg, 2016. "Remote Sensing and GIS Based Groundwater Potential & Recharge Zones Mapping Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 243-260, January.
    7. Rajat Agarwal & P. K. Garg, 2016. "Remote Sensing and GIS Based Groundwater Potential & Recharge Zones Mapping Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 243-260, January.
    8. Xiaobing Xu & Guangyao Li & Da Ni & Cheng Feng & Sifa Xu, 2022. "Laboratory Model Tests of Leachate Drawdown Using Vertical Drainage Wells with Vacuum Pumping in Municipal Solid Waste Landfills with High Leachate Levels," Sustainability, MDPI, vol. 14(13), pages 1-16, July.
    9. Rattan Lal, 2015. "Restoring Soil Quality to Mitigate Soil Degradation," Sustainability, MDPI, vol. 7(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shabnam Mehrnoor & Maryam Robati & Mir Masoud Kheirkhah Zarkesh & Forough Farsad & Shahram Baikpour, 2023. "Land subsidence hazard assessment based on novel hybrid approach: BWM, weighted overlay index (WOI), and support vector machine (SVM)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 1997-2030, February.
    2. Xue Wang & Kun Tan & Kailei Xu & Yu Chen & Jianwei Ding, 2019. "Quantitative Evaluation of the Eco-Environment in a Coalfield Based on Multi-Temporal Remote Sensing Imagery: A Case Study of Yuxian, China," IJERPH, MDPI, vol. 16(3), pages 1-18, February.
    3. Neslihan Beden & Nazire Göksu Soydan-Oksal & Sema Arıman & Hayatullah Ahmadzai, 2023. "Delineation of a Groundwater Potential Zone Map for the Kızılırmak Delta by Using Remote-Sensing-Based Geospatial and Analytical Hierarchy Processes," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    4. Senapati, Ujjal & Das, Tapan Kumar, 2024. "Delineation of potential alternative agriculture region using RS and AHP-based GIS techniques in the drought prone upper Dwarakeswer river basin, West Bengal, India," Ecological Modelling, Elsevier, vol. 490(C).
    5. Duong Hai Ha & Phong Tung Nguyen & Romulus Costache & Nadhir Al-Ansari & Tran Phong & Huu Duy Nguyen & Mahdis Amiri & Rohit Sharma & Indra Prakash & Hiep Le & Hanh Bich Thi Nguyen & Binh Thai Pham, 2021. "Quadratic Discriminant Analysis Based Ensemble Machine Learning Models for Groundwater Potential Modeling and Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4415-4433, October.
    6. Ting Liu & Sherong Zhang & Chao Wang, 2021. "A BIM-Based Safety Management Framework for Operation and Maintenance in Water Diversion Projects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1619-1635, March.
    7. Pazhuparambil Jayarajan Sajil Kumar & Lakshmanan Elango & Michael Schneider, 2022. "GIS and AHP Based Groundwater Potential Zones Delineation in Chennai River Basin (CRB), India," Sustainability, MDPI, vol. 14(3), pages 1-22, February.
    8. Ujjayini Priya & Muhammad Anwar Iqbal & Mohammed Abdus Salam & Md. Nur-E-Alam & Mohammed Faruque Uddin & Abu Reza Md. Towfiqul Islam & Showmitra Kumar Sarkar & Saiful Islam Imran & Aweng Eh Rak, 2022. "Sustainable Groundwater Potential Zoning with Integrating GIS, Remote Sensing, and AHP Model: A Case from North-Central Bangladesh," Sustainability, MDPI, vol. 14(9), pages 1-24, May.
    9. Roshani Singh & Aditya Kumar Anand & Pallavi Banerjee Chattopadhyay, 2022. "Investigation of Topographical Controls on the Groundwater Potential Zone in a Hilly Watershed Using a Geospatial and Geophysical Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5313-5333, October.
    10. Guigui Xu & Xiaosi Su & Yiwu Zhang & Bing You, 2021. "Identifying Potential Sites for Artificial Recharge in the Plain Area of the Daqing River Catchment Using GIS-Based Multi-Criteria Analysis," Sustainability, MDPI, vol. 13(7), pages 1-15, April.
    11. Veysel Aslan & Recep Çelik, 2021. "Integrated GIS-Based Multi-Criteria Analysis for Groundwater Potential Mapping in the Euphrates’s Sub-Basin, Harran Basin, Turkey," Sustainability, MDPI, vol. 13(13), pages 1-16, July.
    12. Ciro Figueiredo & Caroline Mota, 2019. "Learning Preferences in a Spatial Multiple Criteria Decision Approach: An Application in Public Security Planning," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1403-1432, July.
    13. Uday Mandal & Satiprasad Sahoo & Selva Balaji Munusamy & Anirban Dhar & Sudhindra N. Panda & Amlanjyoti Kar & Prasanta K. Mishra, 2016. "Delineation of Groundwater Potential Zones of Coastal Groundwater Basin Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4293-4310, September.
    14. Sangita Dey & U. K. Shukla & P. Mehrishi & R. K. Mall, 2021. "Appraisal of groundwater potentiality of multilayer alluvial aquifers of the Varuna river basin, India, using two concurrent methods of MCDM," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17558-17589, December.
    15. Yong Ye & Wei Chen & Guirong Wang & Weifeng Xue, 2022. "Spatial Prediction of the Groundwater Potential Using Remote Sensing Data and Bivariate Statistical-Based Artificial Intelligence Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5461-5494, November.
    16. Amirhosein Mosavi & Farzaneh Sajedi Hosseini & Bahram Choubin & Massoud Goodarzi & Adrienn A. Dineva & Elham Rafiei Sardooi, 2021. "Ensemble Boosting and Bagging Based Machine Learning Models for Groundwater Potential Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 23-37, January.
    17. Hesham Morgan & Hussien M. Hussien & Ahmed Madani & Tamer Nassar, 2022. "Delineating Groundwater Potential Zones in Hyper-Arid Regions Using the Applications of Remote Sensing and GIS Modeling in the Eastern Desert, Egypt," Sustainability, MDPI, vol. 14(24), pages 1-30, December.
    18. Ahmad A. Al-Ghamdi & Yilma Tadesse & Nuru Adgaba & Abdulaziz G. Alghamdi, 2021. "Soil Degradation and Restoration in Southwestern Saudi Arabia through Investigation of Soil Physiochemical Characteristics and Nutrient Status as Indicators," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    19. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2023. "Land Degradation–Desertification in Relation to Farming Practices in India: An Overview of Current Practices and Agro-Policy Perspectives," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    20. Anna Wawrzyk & Mansur Rahnama & Weronika Sofińska-Chmiel & Sławomir Wilczyński & Michał Łobacz, 2022. "The Use of the Diode Laser against the Microbiome on Composites Closing the Screw Access Hall (Sah) in the Reconstruction of Dental Implants: Ex Vivo Studies," IJERPH, MDPI, vol. 19(12), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16948-:d:1006571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.