IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i3p511-d205052.html
   My bibliography  Save this article

Quantitative Evaluation of the Eco-Environment in a Coalfield Based on Multi-Temporal Remote Sensing Imagery: A Case Study of Yuxian, China

Author

Listed:
  • Xue Wang

    (Key Laboratory for Land Environment and Disaster Monitoring of NASG, China University of Mining and Technology, Xuzhou 221116, China
    K.T. and X.W. contributed equally to this work.)

  • Kun Tan

    (Key Laboratory for Land Environment and Disaster Monitoring of NASG, China University of Mining and Technology, Xuzhou 221116, China
    Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
    K.T. and X.W. contributed equally to this work.)

  • Kailei Xu

    (Key Laboratory for Land Environment and Disaster Monitoring of NASG, China University of Mining and Technology, Xuzhou 221116, China
    MEIHANG Remote Sensing Information Co., Ltd, Xi’an 710199, China)

  • Yu Chen

    (Key Laboratory for Land Environment and Disaster Monitoring of NASG, China University of Mining and Technology, Xuzhou 221116, China)

  • Jianwei Ding

    (The Second Surveying and Mapping Institute of Hebei, Shijiazhuang 050037, China)

Abstract

With the exploitation of coalfields, the eco-environment around the coalfields can become badly damaged. To address this issue, “mine greening” has been proposed by the Ministry of Land and Resources of China. The sustainable development of mine environments has now become one of the most prominent issues in China. In this study, we aimed to make use of Landsat 7 ETM+ and Landsat 8 OLI images obtained between 2005 and 2016 to analyze the eco-environment in a coalfield. Land cover was implemented as the basic evaluation factor to establish the evaluation model for the eco-environment. Analysis and investigation of the eco-environment in the Yuxian coalfield was conducted using a novel evaluation model, based on the biological abundance index, vegetation coverage index, water density index, and natural geographical factors. The weight of each indicator was determined by an analytic hierarchy process. Meanwhile, we also used the classic ecological footprint to calculate the ecological carrying capacity in order to verify the effectiveness of the evaluation model. Results showed that the eco-environment index illustrated a slowly increasing tendency over the study period, and the ecological quality could be considered as “good”. The results of the evaluation model showed a strong correlation with the ecological carrying capacity with a correlation coefficient of 0.9734. In conclusion, the evaluation method is a supplement to the time-series quantitative evaluation of the eco-environment, and also helps us to explore the eco-environment in the mining area.

Suggested Citation

  • Xue Wang & Kun Tan & Kailei Xu & Yu Chen & Jianwei Ding, 2019. "Quantitative Evaluation of the Eco-Environment in a Coalfield Based on Multi-Temporal Remote Sensing Imagery: A Case Study of Yuxian, China," IJERPH, MDPI, vol. 16(3), pages 1-18, February.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:3:p:511-:d:205052
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/3/511/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/3/511/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rajat Agarwal & P. Garg, 2016. "Remote Sensing and GIS Based Groundwater Potential & Recharge Zones Mapping Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 243-260, January.
    2. Ferng, Jiun-Jiun, 2014. "Nested open systems: An important concept for applying ecological footprint analysis to sustainable development assessment," Ecological Economics, Elsevier, vol. 106(C), pages 105-111.
    3. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    4. Ximin Cui & Yongge Gao & Debao Yuan, 2014. "Sudden surface collapse disasters caused by shallow partial mining in Datong coalfield, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 911-929, November.
    5. Rajat Agarwal & P. K. Garg, 2016. "Remote Sensing and GIS Based Groundwater Potential & Recharge Zones Mapping Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 243-260, January.
    6. Chen Zeng & Yaolin Liu & Yanfang Liu & Jiameng Hu & Xiaogang Bai & Xiaoyu Yang, 2011. "An Integrated Approach for Assessing Aquatic Ecological Carrying Capacity: A Case Study of Wujin District in the Tai Lake Basin, China," IJERPH, MDPI, vol. 8(1), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Senapati, Ujjal & Das, Tapan Kumar, 2024. "Delineation of potential alternative agriculture region using RS and AHP-based GIS techniques in the drought prone upper Dwarakeswer river basin, West Bengal, India," Ecological Modelling, Elsevier, vol. 490(C).
    2. Ujjayini Priya & Muhammad Anwar Iqbal & Mohammed Abdus Salam & Md. Nur-E-Alam & Mohammed Faruque Uddin & Abu Reza Md. Towfiqul Islam & Showmitra Kumar Sarkar & Saiful Islam Imran & Aweng Eh Rak, 2022. "Sustainable Groundwater Potential Zoning with Integrating GIS, Remote Sensing, and AHP Model: A Case from North-Central Bangladesh," Sustainability, MDPI, vol. 14(9), pages 1-24, May.
    3. Shabnam Mehrnoor & Maryam Robati & Mir Masoud Kheirkhah Zarkesh & Forough Farsad & Shahram Baikpour, 2023. "Land subsidence hazard assessment based on novel hybrid approach: BWM, weighted overlay index (WOI), and support vector machine (SVM)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 1997-2030, February.
    4. Neslihan Beden & Nazire Göksu Soydan-Oksal & Sema Arıman & Hayatullah Ahmadzai, 2023. "Delineation of a Groundwater Potential Zone Map for the Kızılırmak Delta by Using Remote-Sensing-Based Geospatial and Analytical Hierarchy Processes," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    5. Duong Hai Ha & Phong Tung Nguyen & Romulus Costache & Nadhir Al-Ansari & Tran Phong & Huu Duy Nguyen & Mahdis Amiri & Rohit Sharma & Indra Prakash & Hiep Le & Hanh Bich Thi Nguyen & Binh Thai Pham, 2021. "Quadratic Discriminant Analysis Based Ensemble Machine Learning Models for Groundwater Potential Modeling and Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4415-4433, October.
    6. Ting Liu & Sherong Zhang & Chao Wang, 2021. "A BIM-Based Safety Management Framework for Operation and Maintenance in Water Diversion Projects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1619-1635, March.
    7. Xinyang Liu & Yu Wang, 2022. "Identification and Assessment of Groundwater and Soil Contamination from an Informal Landfill Site," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    8. Pazhuparambil Jayarajan Sajil Kumar & Lakshmanan Elango & Michael Schneider, 2022. "GIS and AHP Based Groundwater Potential Zones Delineation in Chennai River Basin (CRB), India," Sustainability, MDPI, vol. 14(3), pages 1-22, February.
    9. Roshani Singh & Aditya Kumar Anand & Pallavi Banerjee Chattopadhyay, 2022. "Investigation of Topographical Controls on the Groundwater Potential Zone in a Hilly Watershed Using a Geospatial and Geophysical Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5313-5333, October.
    10. Guigui Xu & Xiaosi Su & Yiwu Zhang & Bing You, 2021. "Identifying Potential Sites for Artificial Recharge in the Plain Area of the Daqing River Catchment Using GIS-Based Multi-Criteria Analysis," Sustainability, MDPI, vol. 13(7), pages 1-15, April.
    11. Veysel Aslan & Recep Çelik, 2021. "Integrated GIS-Based Multi-Criteria Analysis for Groundwater Potential Mapping in the Euphrates’s Sub-Basin, Harran Basin, Turkey," Sustainability, MDPI, vol. 13(13), pages 1-16, July.
    12. Ciro Figueiredo & Caroline Mota, 2019. "Learning Preferences in a Spatial Multiple Criteria Decision Approach: An Application in Public Security Planning," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1403-1432, July.
    13. Uday Mandal & Satiprasad Sahoo & Selva Balaji Munusamy & Anirban Dhar & Sudhindra N. Panda & Amlanjyoti Kar & Prasanta K. Mishra, 2016. "Delineation of Groundwater Potential Zones of Coastal Groundwater Basin Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4293-4310, September.
    14. Sangita Dey & U. K. Shukla & P. Mehrishi & R. K. Mall, 2021. "Appraisal of groundwater potentiality of multilayer alluvial aquifers of the Varuna river basin, India, using two concurrent methods of MCDM," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17558-17589, December.
    15. Yong Ye & Wei Chen & Guirong Wang & Weifeng Xue, 2022. "Spatial Prediction of the Groundwater Potential Using Remote Sensing Data and Bivariate Statistical-Based Artificial Intelligence Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5461-5494, November.
    16. Amirhosein Mosavi & Farzaneh Sajedi Hosseini & Bahram Choubin & Massoud Goodarzi & Adrienn A. Dineva & Elham Rafiei Sardooi, 2021. "Ensemble Boosting and Bagging Based Machine Learning Models for Groundwater Potential Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 23-37, January.
    17. Hesham Morgan & Hussien M. Hussien & Ahmed Madani & Tamer Nassar, 2022. "Delineating Groundwater Potential Zones in Hyper-Arid Regions Using the Applications of Remote Sensing and GIS Modeling in the Eastern Desert, Egypt," Sustainability, MDPI, vol. 14(24), pages 1-30, December.
    18. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    19. Jochen Wulf, 2020. "Development of an AHP hierarchy for managing omnichannel capabilities: a design science research approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 39-68, April.
    20. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:3:p:511-:d:205052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.