IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i1d10.1007_s10668-020-00593-5.html
   My bibliography  Save this article

An integrated approach for mapping groundwater potential applying geospatial and MIF techniques in the semiarid region

Author

Listed:
  • Soumik Bhattacharya

    (Symbiosis International (Deemed University))

  • Swarupa Das

    (Barjora College)

  • Sandipan Das

    (Symbiosis International (Deemed University))

  • Mahesh Kalashetty

    (Symbiosis International (Deemed University))

  • Sumedh R. Warghat

    (Sant Gadge Baba Amravati University)

Abstract

Geospatial methods play an important role in the identification, monitoring, assessment, and conservation of groundwater resources. An integrated approach combining the geospatial techniques and multi-influencing factors (MIF) was adapted for the determination of potential groundwater zone in the Purulia District of West Bengal, Eastern India. The present groundwater is underexploited for agricultural and other activities. This study would also benefit in identifying the artificial recharge zone for further research and developmental activity in the region. The important parameters including slope, landuse/cover, lineament, drainage, geology, and soil affecting potential groundwater occurrence were generated from Topo Maps, Landsat remote sensing imagery, and various ancillary data. Various thematic layers were allocated a fixed score as weightage using MIF technique. Thereafter, the weighted layers were statistically computed in the overlay analysis to generate the groundwater prospect map. The groundwater potential map demonstrated five zones, viz. very good (13.8%), good (34.9%), moderate (48.3%), poor (2.8%), and very poor (0.2%). The findings of the research study would enable to carry out future research and propose effective planning and management of groundwater development.

Suggested Citation

  • Soumik Bhattacharya & Swarupa Das & Sandipan Das & Mahesh Kalashetty & Sumedh R. Warghat, 2021. "An integrated approach for mapping groundwater potential applying geospatial and MIF techniques in the semiarid region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 495-510, January.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:1:d:10.1007_s10668-020-00593-5
    DOI: 10.1007/s10668-020-00593-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00593-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00593-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prabir Mukherjee & Chander Singh & Saumitra Mukherjee, 2012. "Delineation of Groundwater Potential Zones in Arid Region of India—A Remote Sensing and GIS Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2643-2672, July.
    2. Deepesh Machiwal & Madan Jha & Bimal Mal, 2011. "Assessment of Groundwater Potential in a Semi-Arid Region of India Using Remote Sensing, GIS and MCDM Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1359-1386, March.
    3. World Bank, 2010. "Deep Wells and Prudence : Towards Pragmatic Action for Addressing Groundwater Overexploitation in India," World Bank Publications - Reports 2835, The World Bank Group.
    4. Roopal Suhag, 2016. "Overview of Ground Water in India," Working Papers id:9504, eSocialSciences.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Delia B. Senoro & Kevin Lawrence M. De Jesus & Cris Edward F. Monjardin, 2023. "Pollution and Risk Evaluation of Toxic Metals and Metalloid in Water Resources of San Jose, Occidental Mindoro, Philippines," Sustainability, MDPI, vol. 15(4), pages 1-35, February.
    2. Fatima Zahra Echogdali & Said Boutaleb & Rosine Basseu Kpan & Mohammed Ouchchen & Amine Bendarma & Hasna El Ayady & Kamal Abdelrahman & Mohammed S. Fnais & Kochappi Sathyan Sajinkumar & Mohamed Abioui, 2022. "Application of Fuzzy Logic and Fractal Modeling Approach for Groundwater Potential Mapping in Semi-Arid Akka Basin, Southeast Morocco," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    3. Subham Roy & Nimai Singha & Arghadeep Bose & Debanjan Basak & Indrajit Roy Chowdhury, 2023. "Multi-influencing factor (MIF) and RS–GIS-based determination of agriculture site suitability for achieving sustainable development of Sub-Himalayan region, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 7101-7133, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Namrata Chindarkar & R. Quentin Grafton, 2019. "India's depleting groundwater: When science meets policy," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 6(1), pages 108-124, January.
    2. Duong Hai Ha & Phong Tung Nguyen & Romulus Costache & Nadhir Al-Ansari & Tran Phong & Huu Duy Nguyen & Mahdis Amiri & Rohit Sharma & Indra Prakash & Hiep Le & Hanh Bich Thi Nguyen & Binh Thai Pham, 2021. "Quadratic Discriminant Analysis Based Ensemble Machine Learning Models for Groundwater Potential Modeling and Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4415-4433, October.
    3. Biswajit Das & Subodh Chandra Pal, 2020. "Assessment of groundwater recharge and its potential zone identification in groundwater-stressed Goghat-I block of Hugli District, West Bengal, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5905-5923, August.
    4. Tarun Kumar & Amar Gautam & Tinu Kumar, 2014. "Appraising the accuracy of GIS-based Multi-criteria decision making technique for delineation of Groundwater potential zones," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4449-4466, October.
    5. Imran Jamali & Ulla Mörtberg & Bo Olofsson & Muhammad Shafique, 2014. "A Spatial Multi-Criteria Analysis Approach for Locating Suitable Sites for Construction of Subsurface Dams in Northern Pakistan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5157-5174, November.
    6. G. Gnanachandrasamy & C. Dushiyanthan & T. Jeyavel Rajakumar & Yongzhang Zhou, 2020. "Assessment of hydrogeochemical characteristics of groundwater in the lower Vellar river basin: using Geographical Information System (GIS) and Water Quality Index (WQI)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 759-789, February.
    7. Pamela Katic, 2015. "Groundwater Spatial Dynamics and Endogenous Well Location," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 181-196, January.
    8. Jha, Madan K. & Chowdary, V.M. & Kulkarni, Y. & Mal, B.C., 2014. "Rainwater harvesting planning using geospatial techniques and multicriteria decision analysis," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 96-111.
    9. Mónica de Castro-Pardo & Pascual Fernández Martínez & Amelia Pérez Zabaleta & João C. Azevedo, 2021. "Dealing with Water Conflicts: A Comprehensive Review of MCDM Approaches to Manage Freshwater Ecosystem Services," Land, MDPI, vol. 10(5), pages 1-32, April.
    10. Komeda, Kenji, 2021. "Environmental Factors and Internal Migration in India," Warwick-Monash Economics Student Papers 20, Warwick Monash Economics Student Papers.
    11. Golam Saleh Ahmed Salem & So Kazama & Shamsuddin Shahid & Nepal C. Dey, 2018. "Groundwater-dependent irrigation costs and benefits for adaptation to global change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 953-979, August.
    12. Rubio-Aliaga, Alvaro & García-Cascales, M. Socorro & Sánchez-Lozano, Juan Miguel & Molina-Garcia, Angel, 2021. "MCDM-based multidimensional approach for selection of optimal groundwater pumping systems: Design and case example," Renewable Energy, Elsevier, vol. 163(C), pages 213-224.
    13. Asprilla-Echeverria, John, 2024. "How do farmers adapt to water scarcity? Evidence from field experiments," Agricultural Water Management, Elsevier, vol. 297(C).
    14. Strand, Jon, 2012. "Low-level versus high-level equilibrium in public utility services," Journal of Public Economics, Elsevier, vol. 96(1), pages 163-172.
    15. Arash Malekian & Ali Azarnivand, 2016. "Application of Integrated Shannon’s Entropy and VIKOR Techniques in Prioritization of Flood Risk in the Shemshak Watershed, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 409-425, January.
    16. Audrey Richard-Ferroudji & Nicolas Faysse & Zhour Bouzidi & Menon Ragunath & Jean-Daniel Rinaudo, 2016. "Proposal COSUST Special Issue « Co-designing Research on Social Transformations to Sustainability » Title: The DIALAQ project on sustainable groundwater management: a transdisciplinary and transcultur," Post-Print hal-01378517, HAL.
    17. Khamis Naba Sayl & Nur Shazwani Muhammad & Zaher Mundher Yaseen & Ahmed El-shafie, 2016. "Estimation the Physical Variables of Rainwater Harvesting System Using Integrated GIS-Based Remote Sensing Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3299-3313, July.
    18. Neslihan Beden & Nazire Göksu Soydan-Oksal & Sema Arıman & Hayatullah Ahmadzai, 2023. "Delineation of a Groundwater Potential Zone Map for the Kızılırmak Delta by Using Remote-Sensing-Based Geospatial and Analytical Hierarchy Processes," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    19. World Bank, 2020. "Managing Groundwater for Drought Resilience in South Asia," World Bank Publications - Reports 33332, The World Bank Group.
    20. Kumar, Dinesh M., 2013. "Raising Agricultural Productivity, Reducing Groundwater Use and Mitigating Carbon Emissions: Role of Energy Pricing in Farm Sector," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 68(3), pages 1-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:1:d:10.1007_s10668-020-00593-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.