IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v25y2011i2p449-463.html
   My bibliography  Save this article

A Multi-objective Linear Programming Model with Interval Parameters for Water Resources Allocation in Dalian City

Author

Listed:
  • Yan Han
  • Yue-Fei Huang
  • Guang-Qian Wang
  • Imran Maqsood

Abstract

Water resources management has been of concern for many researchers since the contradiction between increased water demand and decreased water supply has become obvious. In the real world, water resources systems usually have complexities among social, economic, natural resources and environmental aspects, which leads to multi-objective problems with significant uncertainties in system parameters, objectives, and their interactions. In this paper, a multi-objective linear programming model with interval parameters has been developed wherein an interactive compromising algorithm has been introduced. Through interactive compromising conflicts among multi-objectives, a feasible solution vector can be obtained. The developed model is then applied to allocation of multi-source water resources with different water qualities to multiple users with different water quality requirements for the Dalian city for 2010, 2015 and 2020 planning years. The model pursues the maximum synthesis benefits of economy, society and the environment. The results indicate that the proportion of reused water to the total water amount is gradually increasing, and the proportion of agricultural water consumption to the total water consumption is gradually decreasing. The allocation of multi-source water resources to multiple users is improved due to incorporation of uncertain factors into the model that provide useful decision support to water management authorities. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • Yan Han & Yue-Fei Huang & Guang-Qian Wang & Imran Maqsood, 2011. "A Multi-objective Linear Programming Model with Interval Parameters for Water Resources Allocation in Dalian City," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 449-463, January.
  • Handle: RePEc:spr:waterr:v:25:y:2011:i:2:p:449-463
    DOI: 10.1007/s11269-010-9708-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-010-9708-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-010-9708-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Guo H. & Baetz, Brian W. & Patry, Gilles G., 1995. "Grey integer programming: An application to waste management planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 83(3), pages 594-620, June.
    2. H. Lu & G. Huang & G. Zeng & I. Maqsood & L. He, 2008. "An Inexact Two-stage Fuzzy-stochastic Programming Model for Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(8), pages 991-1016, August.
    3. Yan Han & Shi-guo Xu & Xiang-zhou Xu, 2008. "Modeling Multisource Multiuser Water Resources Allocation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 911-923, July.
    4. Andrew Higgins & Ainsley Archer & Stefan Hajkowicz, 2008. "A Stochastic Non-linear Programming Model for a Multi-period Water Resource Allocation with Multiple Objectives," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1445-1460, October.
    5. P. Jairaj & S. Vedula, 2000. "Multireservoir System Optimization using Fuzzy Mathematical Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 14(6), pages 457-472, December.
    6. Huang, G. H. & Baetz, B. W. & Patry, G. G., 1995. "Grey fuzzy integer programming: An application to regional waste management planning under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 29(1), pages 17-38, March.
    7. Lijing Wang & Wei Meng & Huaicheng Guo & Zhenxing Zhang & Yong Liu & Yingying Fan, 2006. "An Interval Fuzzy Multiobjective Watershed Management Model for the Lake Qionghai Watershed, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(5), pages 701-721, October.
    8. Sakawa, Masatoshi & Kato, Kosuke & Nishizaki, Ichiro, 2003. "An interactive fuzzy satisficing method for multiobjective stochastic linear programming problems through an expectation model," European Journal of Operational Research, Elsevier, vol. 145(3), pages 665-672, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanif Malekpoor & Konstantinos Chalvatzis & Nishikant Mishra & Mukesh Kumar Mehlawat & Dimitrios Zafirakis & Malin Song, 2018. "Integrated grey relational analysis and multi objective grey linear programming for sustainable electricity generation planning," Annals of Operations Research, Springer, vol. 269(1), pages 475-503, October.
    2. Pradeep Dogra & V. Sharda & P. Ojasvi & Shiv Prasher & R. Patel, 2014. "Compromise Programming Based Model for Augmenting Food Production with Minimum Water Allocation in a Watershed: a Case Study in the Indian Himalayas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5247-5265, December.
    3. Kaiyong Wang & Pengyan Zhang & Bo Pang, 2018. "Process and Mechanism of Agricultural Irrigation Benefit Allocation Coefficient Based on Emergy Analysis—A Case Study of Henan, China," Sustainability, MDPI, vol. 10(12), pages 1-15, November.
    4. Hadis Mohajerani & Majid Kholghi & Abolfazl Mosaedi & Raziyeh Farmani & Amir Sadoddin & Markus Casper, 2017. "Application of Bayesian Decision Networks for Groundwater Resources Management Under the Conditions of High Uncertainty and Data Scarcity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 1859-1879, April.
    5. R. Roozbahani & B. Abbasi & S. Schreider & A. Ardakani, 2014. "A Multi-objective Approach for Transboundary River Water Allocation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5447-5463, December.
    6. Binglong Wang & Yanpeng Cai & Xin’An Yin & Qian Tan & Yan Hao, 2017. "An Integrated Approach of System Dynamics, Orthogonal Experimental Design and Inexact Optimization for Supporting Water Resources Management under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1665-1694, March.
    7. B. Sarma & A. Sarma & V. Singh, 2013. "Optimal Ecological Management Practices (EMPs) for Minimizing the Impact of Climate Change and Watershed Degradation Due to Urbanization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4069-4082, September.
    8. Fuxing Wang & Oliver Saavedra Valeriano & Xinguo Sun, 2013. "Near Real-Time Optimization of Multi-Reservoir during Flood Season in the Fengman Basin of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4315-4335, September.
    9. Sagarika Patowary & Banasri Sarma & Arup Kumar Sarma, 2019. "A Revision of OPTEMP-LS Model for Selecting Optimal EMP Combination for Minimizing Sediment and Water Yield from Hilly Urban Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1249-1264, March.
    10. Songsong Liu & Lazaros Papageorgiou & Petros Gikas, 2012. "Integrated Management of Non-conventional Water Resources in Anhydrous Islands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 359-375, January.
    11. Ali Reza Nafarzadegan & Hassan Vagharfard & Mohammad Reza Nikoo & Ahmad Nohegar, 2018. "Socially-Optimal and Nash Pareto-Based Alternatives for Water Allocation under Uncertainty: an Approach and Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 2985-3000, July.
    12. D. Morankar & K. Srinivasa Raju & D. Nagesh Kumar, 2013. "Integrated Sustainable Irrigation Planning with Multiobjective Fuzzy Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 3981-4004, September.
    13. Chunlong Li & Jianzhong Zhou & Shuo Ouyang & Chao Wang & Yi Liu, 2015. "Water Resources Optimal Allocation Based on Large-scale Reservoirs in the Upper Reaches of Yangtze River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2171-2187, May.
    14. Ammar Ahmed Musa, 2021. "Goal programming model for optimal water allocation of limited resources under increasing demands," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5956-5984, April.
    15. Cai, Yanpeng & Yue, Wencong & Xu, Linyu & Yang, Zhifeng & Rong, Qiangqiang, 2016. "Sustainable urban water resources management considering life-cycle environmental impacts of water utilization under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 21-40.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maqsood, Imran & Huang, Guo H. & Scott Yeomans, Julian, 2005. "An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 208-225, November.
    2. H. Zhu & G. Huang & P. Guo & X. Qin, 2009. "A Fuzzy Robust Nonlinear Programming Model for Stream Water Quality Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 2913-2940, November.
    3. Pradeep Dogra & V. Sharda & P. Ojasvi & Shiv Prasher & R. Patel, 2014. "Compromise Programming Based Model for Augmenting Food Production with Minimum Water Allocation in a Watershed: a Case Study in the Indian Himalayas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5247-5265, December.
    4. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "An interval-valued minimax-regret analysis approach for the identification of optimal greenhouse-gas abatement strategies under uncertainty," Energy Policy, Elsevier, vol. 39(7), pages 4313-4324, July.
    5. Chunlong Li & Jianzhong Zhou & Shuo Ouyang & Chao Wang & Yi Liu, 2015. "Water Resources Optimal Allocation Based on Large-scale Reservoirs in the Upper Reaches of Yangtze River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2171-2187, May.
    6. Chunguang Bai & Joseph Sarkis, 2013. "Green information technology strategic justification and evaluation," Information Systems Frontiers, Springer, vol. 15(5), pages 831-847, November.
    7. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    8. Lin, Q.G. & Huang, G.H., 2009. "A dynamic inexact energy systems planning model for supporting greenhouse-gas emission management and sustainable renewable energy development under uncertainty--A case study for the City of Waterloo,," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1836-1853, October.
    9. Cao, M.F. & Huang, G.H. & Lin, Q.G., 2010. "Integer programming with random-boundary intervals for planning municipal power systems," Applied Energy, Elsevier, vol. 87(8), pages 2506-2516, August.
    10. Tian, Chuyin & Huang, Guohe & Xie, Yulei, 2021. "Systematic evaluation for hydropower exploitation rationality in hydro-dominant area: A case study of Sichuan Province, China," Renewable Energy, Elsevier, vol. 168(C), pages 1096-1111.
    11. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    12. Liang, M.S. & Huang, G.H. & Chen, J.P. & Li, Y.P., 2022. "Development of non-deterministic energy-water-carbon nexus planning model: A case study of Shanghai, China," Energy, Elsevier, vol. 246(C).
    13. Hu, Qing & Huang, Guohe & Cai, Yanpeng & Huang, Ying, 2011. "Feasibility-based inexact fuzzy programming for electric power generation systems planning under dual uncertainties," Applied Energy, Elsevier, vol. 88(12), pages 4642-4654.
    14. Xu, Y. & Huang, G.H. & Qin, X.S. & Cao, M.F., 2009. "SRCCP: A stochastic robust chance-constrained programming model for municipal solid waste management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 352-363.
    15. Dong, C. & Huang, G.H. & Cai, Y.P. & Liu, Y., 2012. "An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city," Energy, Elsevier, vol. 37(1), pages 673-688.
    16. He, Li & Huang, Guo H. & Lu, Hongwei, 2011. "Bivariate interval semi-infinite programming with an application to environmental decision-making analysis," European Journal of Operational Research, Elsevier, vol. 211(3), pages 452-465, June.
    17. Li, Y.F. & Li, Y.P. & Huang, G.H. & Chen, X., 2010. "Energy and environmental systems planning under uncertainty--An inexact fuzzy-stochastic programming approach," Applied Energy, Elsevier, vol. 87(10), pages 3189-3211, October.
    18. Lv, Y. & Yan, X.D. & Sun, W. & Gao, Z.Y., 2015. "A risk-based method for planning of bus–subway corridor evacuation under hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 188-199.
    19. Weiwei Pan & Lirong Jian & Tao Liu, 2019. "Grey system theory trends from 1991 to 2018: a bibliometric analysis and visualization," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1407-1434, December.
    20. Chen, C. & Li, Y.P. & Huang, G.H., 2016. "Interval-fuzzy municipal-scale energy model for identification of optimal strategies for energy management – A case study of Tianjin, China," Renewable Energy, Elsevier, vol. 86(C), pages 1161-1177.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:25:y:2011:i:2:p:449-463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.