IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v28y2014i15p5247-5265.html
   My bibliography  Save this article

Compromise Programming Based Model for Augmenting Food Production with Minimum Water Allocation in a Watershed: a Case Study in the Indian Himalayas

Author

Listed:
  • Pradeep Dogra
  • V. Sharda
  • P. Ojasvi
  • Shiv Prasher
  • R. Patel

Abstract

A compromise programming based model has been developed for maximizing food production with minimum allocation of available water at watershed scale after meeting human, livestock and environmental needs under different scenarios. Agricultural water allocation in conjunction with available land resources under a set of constraints has been examined. The formulated model has the potential to analyze the implications of water availability on agricultural water allocation plans, and consequently food production. A case study in Indian Himalayan region, where despite abundant availability of water, rainfed agriculture is mostly practiced by majority of farmers with a primary objective of self-sufficiency in food production, well demonstrates the applicability of the developed model. Three distinct scenarios affecting water availability were considered. Analysis of imposition of fixed mandatory outflows of 20 to 70 % (as per water source) for satisfying environmental needs with present production mix revealed water scarcity within the study watershed ranging from 4 to 66 % across various quarters of an year, which necessitates optimum utilization of rainfed fallow land by allocating it to high value crops ginger and lentil (6 to 32 times more than existing allocation) on one hand, and drastic reduction (76 to 100 %) of area under all irrigated crops (except onion with 4–6 times increase) on the other, to achieve the conflicting objectives. The compromise plans also suggested increase (by 14 % in environmental watershed scenario) or decrease (by 29 % in degraded watershed scenario) in size of livestock population as per scenario based water availability. Overall, the compromise plans were successful in achieving a high percentage (>93 %) of ideal values of the objective functions, which were 155 to 170 % of existing food production and 71 to 85 % of existing water utilization across the scenarios. The proposed optimization model has the potential for application in identical agro-climatic settings to enhance food production in an environmental friendly manner. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Pradeep Dogra & V. Sharda & P. Ojasvi & Shiv Prasher & R. Patel, 2014. "Compromise Programming Based Model for Augmenting Food Production with Minimum Water Allocation in a Watershed: a Case Study in the Indian Himalayas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5247-5265, December.
  • Handle: RePEc:spr:waterr:v:28:y:2014:i:15:p:5247-5265
    DOI: 10.1007/s11269-014-0666-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0666-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0666-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malin Falkenmark, 2007. "Shift in thinking to address the 21st century hunger gap," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 3-18, January.
    2. P. Guo & G. Huang & L. He & H. Zhu, 2009. "Interval-parameter Two-stage Stochastic Semi-infinite Programming: Application to Water Resources Management under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 1001-1023, March.
    3. M. Babel & A. Gupta & D. Nayak, 2005. "A Model for Optimal Allocation of Water to Competing Demands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(6), pages 693-712, December.
    4. Hajkowicz, Stefan & Higgins, Andrew, 2008. "A comparison of multiple criteria analysis techniques for water resource management," European Journal of Operational Research, Elsevier, vol. 184(1), pages 255-265, January.
    5. H. Lu & G. Huang & G. Zeng & I. Maqsood & L. He, 2008. "An Inexact Two-stage Fuzzy-stochastic Programming Model for Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(8), pages 991-1016, August.
    6. Gebrezgabher, Solomie A. & Meuwissen, Miranda P.M. & Oude Lansink, Alfons G.J.M., 2014. "A multiple criteria decision making approach to manure management systems in the Netherlands," European Journal of Operational Research, Elsevier, vol. 232(3), pages 643-653.
    7. Guoting Geng & Robin Wardlaw, 2013. "Application of Multi-Criterion Decision Making Analysis to Integrated Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3191-3207, June.
    8. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture," IWMI Books, Reports H040193, International Water Management Institute.
    9. de Fraiture, Charlotte & Wichelns, Dennis, 2010. "Satisfying future water demands for agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 502-511, April.
    10. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary. In Russian," IWMI Books, Reports H041260, International Water Management Institute.
    11. Nazer, Dima W. & Tilmant, Amaury & Mimi, Ziad & Siebel, Maarten A. & Van der Zaag, Pieter & Gijzen, Huub J., 2010. "Optimizing irrigation water use in the West Bank, Palestine," Agricultural Water Management, Elsevier, vol. 97(2), pages 339-345, February.
    12. Onur Hınçal & A. Altan-Sakarya & A. Metin Ger, 2011. "Optimization of Multireservoir Systems by Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1465-1487, March.
    13. de Fraiture, Charlotte & Molden, David & Wichelns, Dennis, 2010. "Investing in water for food, ecosystems, and livelihoods: An overview of the comprehensive assessment of water management in agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 495-501, April.
    14. H. Lu & G. Huang & L. He, 2012. "Simulation-Based Inexact Rough-Interval Programming for Agricultural Irrigation Management: A Case Study in the Yongxin County, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4163-4182, November.
    15. Yan Han & Shi-guo Xu & Xiang-zhou Xu, 2008. "Modeling Multisource Multiuser Water Resources Allocation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 911-923, July.
    16. Sethi, Laxmi Narayan & Panda, Sudhindra N. & Nayak, Manoj K., 2006. "Optimal crop planning and water resources allocation in a coastal groundwater basin, Orissa, India," Agricultural Water Management, Elsevier, vol. 83(3), pages 209-220, June.
    17. Andrew Higgins & Ainsley Archer & Stefan Hajkowicz, 2008. "A Stochastic Non-linear Programming Model for a Multi-period Water Resource Allocation with Multiple Objectives," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1445-1460, October.
    18. Evans, Elizabeth M. & Lee, David R. & Boisvert, Richard N. & Arce, Blanca & Steenhuis, Tammo S. & Prano, Mauricio & Poats, Susan V., 2003. "Achieving efficiency and equity in irrigation management: an optimization model of the El Angel watershed, Carchi, Ecuador," Agricultural Systems, Elsevier, vol. 77(1), pages 1-22, July.
    19. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary," IWMI Books, Reports H039769, International Water Management Institute.
    20. Stefan Hajkowicz & Kerry Collins, 2007. "A Review of Multiple Criteria Analysis for Water Resource Planning and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1553-1566, September.
    21. Mahdi Zarghami & Ahmad Abrishamchi & Reza Ardakanian, 2008. "Multi-criteria Decision Making for Integrated Urban Water Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(8), pages 1017-1029, August.
    22. Yan Han & Yue-Fei Huang & Guang-Qian Wang & Imran Maqsood, 2011. "A Multi-objective Linear Programming Model with Interval Parameters for Water Resources Allocation in Dalian City," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 449-463, January.
    23. Parviz Fattahi & Saeed Fayyaz, 2010. "A Compromise Programming Model to Integrated Urban Water Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1211-1227, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Dutta & B.C. Sahoo & Rajashree Mishra & S. Acharya, 2016. "Fuzzy Stochastic Genetic Algorithm for Obtaining Optimum Crops Pattern and Water Balance in a Farm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4097-4123, September.
    2. Erez Braude & Shmuel Hauser & Zilla Sinuany-Stern & Gideon Oron, 2015. "Water Allocation Between the Agricultural and the Municipal Sectors Under Scarcity: A Financial Approach Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3481-3501, August.
    3. Qiang Fu & Tianxiao Li & Song Cui & Dong Liu & Xueping Lu, 2018. "Agricultural Multi-Water Source Allocation Model Based on Interval Two-Stage Stochastic Robust Programming under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1261-1274, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Zhineng & Chen, Yazhen & Yao, Liming & Wei, Changting & Li, Chaozhi, 2016. "Optimal allocation of regional water resources: From a perspective of equity–efficiency tradeoff," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 102-113.
    2. Lankford, B. & Makin, Ian & Matthews, N. & McCornick, Peter G. & Noble, A. & Shah, Tushaar, "undated". "A compact to revitalise large-scale irrigation systems using a leadership-partnership-ownership 'Theory of Change'," Papers published in Journals (Open Access) H047459, International Water Management Institute.
    3. Chunlong Li & Jianzhong Zhou & Shuo Ouyang & Chao Wang & Yi Liu, 2015. "Water Resources Optimal Allocation Based on Large-scale Reservoirs in the Upper Reaches of Yangtze River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2171-2187, May.
    4. Palazzo,Amanda & Valin,Hugo Jean Pierre & Batka,Miroslav & Havlík,Petr, 2019. "Investment Needs for Irrigation Infrastructure along Different Socioeconomic Pathways," Policy Research Working Paper Series 8744, The World Bank.
    5. de Fraiture, Charlotte & Molden, David & Wichelns, Dennis, 2010. "Investing in water for food, ecosystems, and livelihoods: An overview of the comprehensive assessment of water management in agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 495-501, April.
    6. Sun, Haoyang & Wang, Sufen & Hao, Xinmei, 2017. "An Improved Analytic Hierarchy Process Method for the evaluation of agricultural water management in irrigation districts of north China," Agricultural Water Management, Elsevier, vol. 179(C), pages 324-337.
    7. Facon, T. & Mukherji, Aditi, 2010. "Small-scale irrigation: is this the future?," Conference Papers h043372, International Water Management Institute.
    8. Madan Jha & Y. Kamii & K. Chikamori, 2009. "Cost-effective Approaches for Sustainable Groundwater Management in Alluvial Aquifer Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(2), pages 219-233, January.
    9. S. S. Khandelwal & S. D. Dhiman, 2018. "Optimal Allocation of Land and Water Resources in a Canal Command Area in the Deterministic and Stochastic Regimes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1569-1584, March.
    10. S. Ashbolt & S. Maheepala & B. Perera, 2014. "A Framework for Short-term Operational Planning for Water Grids," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2367-2380, June.
    11. Wouter Beekman & Gert Jan Veldwisch, 2016. "Supporting Farmer-Led Irrigation in Mozambique: Reflections on Field-Testing a New Design Approach," Sustainability, MDPI, vol. 8(6), pages 1-16, June.
    12. Liu, Jing & Hertel, Thomas W. & Taheripour, Farzad & Zhu, Tingju & Ringler, Claudia, 2013. "Water Scarcity and International Agricultural Trade," Conference papers 332335, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. Christopher O. AKINBILE & Andrew E. ERAZUA & Toju E. BABALOLA & Fidelis O. AJIBADE, 2016. "Environmental implications of animal wastes pollution on agricultural soil and water quality," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 11(3), pages 172-180.
    14. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    15. Leakey, Roger & Kranjac-Berisavljevic, Gordana & Caron, Patrick & Craufurd, Peter & Martin, Adrienne M. & McDonald, Andy & Abedini, Walter & Afiff, Suraya & Bakurin, Ndey & Bass, Steve & Hilbeck, Ange, 2009. "Impacts of AKST on development and sustainability goals," Book Chapters,, International Water Management Institute.
    16. Scheierling, Susanne M. & Treguer, David O. & Booker, James F. & Decker, Elisabeth, 2014. "How to assess agricultural water productivity ? looking for water in the agricultural productivity and efficiency literature," Policy Research Working Paper Series 6982, The World Bank.
    17. Awulachew, Seleshi Bekele, 2011. "Water-centered growth challenges, innovations and interventions in Ethiopia," Conference Papers h044260, International Water Management Institute.
    18. Cunha, Henrique & Loureiro, Dália & Sousa, Gonçalo & Covas, Dídia & Alegre, Helena, 2019. "A comprehensive water balance methodology for collective irrigation systems," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    19. Molle, Francois & Berkoff, Jeremy, 2007. "Water pricing in irrigation: the lifetime of an idea," Book Chapters,, International Water Management Institute.
    20. Bossio, Deborah & Geheb, Kim & Critchley, William, 2010. "Managing water by managing land: Addressing land degradation to improve water productivity and rural livelihoods," Agricultural Water Management, Elsevier, vol. 97(4), pages 536-542, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:28:y:2014:i:15:p:5247-5265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.