IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i4d10.1007_s10668-020-00856-1.html
   My bibliography  Save this article

Goal programming model for optimal water allocation of limited resources under increasing demands

Author

Listed:
  • Ammar Ahmed Musa

    (King Fahd University of Petroleum and Minerals (KFUPM))

Abstract

A multi-objective model has been applied for optimal allocation of water from limited resources to meet increasing demands in multiple sectors. The study region is Saudi Arabia, while the time span is from 2020 to 2050 with interval of 10 years. The available water resources in Saudi Arabia are groundwater (GW), surface water (SW), desalinated water (DW) and treated wastewater (TWW), whereas the users are domestic, agricultural and industrial sectors. The goal programming technique has been used to formulate the model with multiple objectives. These objectives are (1) water demands satisfaction; (2) water quality control; (3) maximizing allocation of SW and TWW; and (4) minimizing extraction of GW, overproduction of DW and overall cost of water use. Allocations of GW, SW and DW in domestic sector are 508.4, 225.7 and 2174.2 MCM, respectively, in 2020, which are projected to be 585.3, 349.1 and 4494.8 MCM, respectively, in 2050. From 2020 to 2050, contribution of GW and SW in agricultural sector may reduce from 10,283.5 and 218.7 MCM to 8753 and 95.2 MCM, respectively, while this reduction is recovered by increasing contribution of TWW from 2291.9 in 2020 to 3945.8 MCM in 2050. During this period, contribution of GW in industrial sector shows increasing rate of approximately 171 MCM per year. Water quality is controlled through controlling the level of total dissolved solids to the standards. Production of DW and TWW has to be increased in order to meet the future needs. The total cost of using water is estimated as 13 billion US$ in 2020, which is predicted to be 22 billion US$ in 2050. This study attempted to suggest the possible scenarios to satisfy increasing water demands from limited resources in different regions of Saudi Arabia. Such scenarios can contribute in developing sustainable strategies for water resources management in water deficit regions.

Suggested Citation

  • Ammar Ahmed Musa, 2021. "Goal programming model for optimal water allocation of limited resources under increasing demands," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5956-5984, April.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:4:d:10.1007_s10668-020-00856-1
    DOI: 10.1007/s10668-020-00856-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00856-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00856-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Omar K.M. Ouda, 2014. "Water demand versus supply in Saudi Arabia: current and future challenges," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 30(2), pages 335-344, June.
    2. Zhanqi Wang & Jun Yang & Xiangzheng Deng & Xi Lan, 2015. "Optimal Water Resources Allocation under the Constraint of Land Use in the Heihe River Basin of China," Sustainability, MDPI, vol. 7(2), pages 1-18, February.
    3. Muhammad Al-Zahrani & Abid Ahmad, 2004. "Stochastic Goal Programming Model for Optimal Blending of Desalinated Water with Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(4), pages 339-352, August.
    4. Songsong Liu & Lazaros Papageorgiou & Petros Gikas, 2012. "Integrated Management of Non-conventional Water Resources in Anhydrous Islands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 359-375, January.
    5. Heather E. Campbell & Ryan M. Johnson & Elizabeth Hunt Larson, 2004. "Prices, Devices, People, or Rules: The Relative Effectiveness of Policy Instruments in Water Conservation1," Review of Policy Research, Policy Studies Organization, vol. 21(5), pages 637-662, September.
    6. Ejaz Qureshi, M. & Hanjra, Munir A. & Ward, John, 2013. "Impact of water scarcity in Australia on global food security in an era of climate change," Food Policy, Elsevier, vol. 38(C), pages 136-145.
    7. Akbar Javadi & Mohammed Hussain & Mohsen Sherif & Raziyeh Farmani, 2015. "Multi-objective Optimization of Different Management Scenarios to Control Seawater Intrusion in Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1843-1857, April.
    8. Hany Abd-Elhamid & Akbar Javadi, 2011. "A Cost-Effective Method to Control Seawater Intrusion in Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2755-2780, September.
    9. Peiyue Li & Hui Qian, 2018. "Water resources research to support a sustainable China," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 34(3), pages 327-336, May.
    10. Yan Han & Yue-Fei Huang & Guang-Qian Wang & Imran Maqsood, 2011. "A Multi-objective Linear Programming Model with Interval Parameters for Water Resources Allocation in Dalian City," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 449-463, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ajay Singh, 2022. "Better Water and Land Allocation for Long-term Agricultural Sustainability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3505-3522, August.
    2. Saleh H. Alyami & Ali Alqahtany & Abdulnoor A. Ghanim & Ismail Elkhrachy & Tareq I. Alrawaf & Rehan Jamil & Naief A. Aldossary, 2022. "Water Resources Depletion and Its Consequences on Agricultural Activities in Najran Valley," Resources, MDPI, vol. 11(12), pages 1-17, December.
    3. Xianlong Ge & Yuanzhi Jin & Long Zhang, 2023. "Genetic-based algorithms for cash-in-transit multi depot vehicle routing problems: economic and environmental optimization," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 557-586, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asaad M. Armanuos & Nadhir Al-Ansari & Zaher Mundher Yaseen, 2020. "Assessing the Effectiveness of Using Recharge Wells for Controlling the Saltwater Intrusion in Unconfined Coastal Aquifers with Sloping Beds: Numerical Study," Sustainability, MDPI, vol. 12(7), pages 1-26, March.
    2. Songsong Liu & Lazaros Papageorgiou & Petros Gikas, 2012. "Integrated Management of Non-conventional Water Resources in Anhydrous Islands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 359-375, January.
    3. Qiying Zhang & Panpan Xu & Hui Qian, 2019. "Assessment of Groundwater Quality and Human Health Risk (HHR) Evaluation of Nitrate in the Central-Western Guanzhong Basin, China," IJERPH, MDPI, vol. 16(21), pages 1-16, November.
    4. Tchigriaeva, Elena & Lott, Corey & Kimberly, Rollins, 2014. "Modeling effects of multiple conservation policy instruments and exogenous factors on urban residential water demand through household heterogeneity," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170605, Agricultural and Applied Economics Association.
    5. Chinanu O. Unigwe & Johnbosco C. Egbueri, 2023. "Drinking water quality assessment based on statistical analysis and three water quality indices (MWQI, IWQI and EWQI): a case study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 686-707, January.
    6. Cinzia Colapinto & Raja Jayaraman & Simone Marsiglio, 2017. "Multi-criteria decision analysis with goal programming in engineering, management and social sciences: a state-of-the art review," Annals of Operations Research, Springer, vol. 251(1), pages 7-40, April.
    7. Mengtian Lu & Siyu Wang & Xiaoying Wang & Weihong Liao & Chao Wang & Xiaohui Lei & Hao Wang, 2022. "An Assessment of Temporal and Spatial Dynamics of Regional Water Resources Security in the DPSIR Framework in Jiangxi Province, China," IJERPH, MDPI, vol. 19(6), pages 1-21, March.
    8. Fu-lin Li & Xue-qun Chen & Cai-hong Liu & Yan-qing Lian & Li He, 2018. "Laboratory tests and numerical simulations on the impact of subsurface barriers to saltwater intrusion," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1223-1235, April.
    9. Chunlong Li & Jianzhong Zhou & Shuo Ouyang & Chao Wang & Yi Liu, 2015. "Water Resources Optimal Allocation Based on Large-scale Reservoirs in the Upper Reaches of Yangtze River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2171-2187, May.
    10. Maria A. Garcia-Valiñas & Wasantha Athukorala & Clevo Wilson & Benno Torgler & Robert Gifford, 2014. "Nondiscretionary residential water use: the impact of habits and water-efficient technologies," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(2), pages 185-204, April.
    11. Katrin Millock & Céline Nauges, 2010. "Household Adoption of Water-Efficient Equipment: The Role of Socio-Economic Factors, Environmental Attitudes and Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 46(4), pages 539-565, August.
    12. Chunci Chen & Guizhen He & Mingzhao Yu, 2023. "Sustainable Watershed Protection from the Public Perspective, China," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
    13. Mohsen Sherif & Anvar Kacimov & Akbar Javadi & Abdel Ebraheem, 2012. "Modeling Groundwater Flow and Seawater Intrusion in the Coastal Aquifer of Wadi Ham, UAE," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(3), pages 751-774, February.
    14. Shazia Kousar & Farhan Ahmed & Amber Pervaiz & Štefan Bojnec, 2021. "Food Insecurity, Population Growth, Urbanization and Water Availability: The Role of Government Stability," Sustainability, MDPI, vol. 13(22), pages 1-19, November.
    15. Haiming Yan & Jinyan Zhan & Feng Wu & Huicai Yang, 2016. "Effects of Climate Change and LUCC on Terrestrial Biomass in the Lower Heihe River Basin during 2001–2010," Energies, MDPI, vol. 9(4), pages 1-18, April.
    16. Maria Carmela Aprile & Damiano Fiorillo, 2016. "Water Conservation Behavior and Environmental Concerns," Discussion Papers 6_2016, CRISEI, University of Naples "Parthenope", Italy.
    17. Om Prakash Vats & Bhrigumani Sharma & Juergen Stamm & Rajib Kumar Bhattacharjya, 2020. "Groundwater Circulation Well for Controlling Saltwater Intrusion in Coastal aquifers: Numerical study with Experimental Validation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(11), pages 3551-3563, September.
    18. Djiby Racine Thiam & Ariel Dinar & Hebert Ntuli, 2021. "Promotion of residential water conservation measures in South Africa: the role of water-saving equipment," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(1), pages 173-210, January.
    19. Partha Majumder & T. I. Eldho, 2016. "A New Groundwater Management Model by Coupling Analytic Element Method and Reverse Particle Tracking with Cat Swarm Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 1953-1972, April.
    20. Ellyson Elias Augustine & Marlia Mohd Hanafiah, 2019. "Awareness Level of Water Resource Conservation of University Students," Water Conservation & Management (WCM), Zibeline International Publishing, vol. 3(2), pages 18-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:4:d:10.1007_s10668-020-00856-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.