IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v168y2021icp1096-1111.html
   My bibliography  Save this article

Systematic evaluation for hydropower exploitation rationality in hydro-dominant area: A case study of Sichuan Province, China

Author

Listed:
  • Tian, Chuyin
  • Huang, Guohe
  • Xie, Yulei

Abstract

Despite the considerable contribution of hydropower for meeting electricity demand and meanwhile achieving free carbon emission, the rationality of hydropower exploitation needs to be reassessed in the context of hydropower curtailment being severe in some hydro-dominant areas. In this paper, a two-stage fuzzy-stochastic chance-constrained interval (TFCI) regional energy system optimization model under multiple complexities is developed for systematically assessing the rationality of existing hydropower exploitation plan, and reflecting the tradeoff between system cost and reliability for Sichuan territory where the exploitable hydropower resources rank first in China. Results showed that the degree of hydropower overcapacity would become far more severe under the real existing energy structure planning. Instead of continuously boosting hydropower exploitation, proper limitation on hydropower installed capacity expansion to make other renewable energy obtain deserved promotion can effectively reduce system cost and improve the utilization efficiency of all the renewable technologies. The highest utilization efficiency of hydropower, wind power and solar power could achieve [90%, 100%], [100%, 100%], and [100%, 100%], respectively. The obtained results also indicated that greater uncertainty about system cost may have to be faced if policymakers aim to lower risk and enhance system reliability. Suggestions are provided for eliminating the irrationality of hydropower in Sichuan and other similar hydro-dominant regions based on above mentioned conclusions.

Suggested Citation

  • Tian, Chuyin & Huang, Guohe & Xie, Yulei, 2021. "Systematic evaluation for hydropower exploitation rationality in hydro-dominant area: A case study of Sichuan Province, China," Renewable Energy, Elsevier, vol. 168(C), pages 1096-1111.
  • Handle: RePEc:eee:renene:v:168:y:2021:i:c:p:1096-1111
    DOI: 10.1016/j.renene.2020.12.121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120320619
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.12.121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Chen, Fu & Li, Weidong, 2018. "Hydropower curtailment in Yunnan Province, southwestern China: Constraint analysis and suggestions," Renewable Energy, Elsevier, vol. 121(C), pages 700-711.
    2. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Lin, Q.G. & Tan, Q., 2009. "Community-scale renewable energy systems planning under uncertainty--An interval chance-constrained programming approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 721-735, May.
    3. Huang, G. H. & Baetz, B. W. & Patry, G. G., 1995. "Grey fuzzy integer programming: An application to regional waste management planning under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 29(1), pages 17-38, March.
    4. Sharma, Shailesh & Waldman, John & Afshari, Shahab & Fekete, Balazs, 2019. "Status, trends and significance of American hydropower in the changing energy landscape," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 112-122.
    5. Chang, Jianxia & Li, Yunyun & Yuan, Meng & Wang, Yimin, 2017. "Efficiency evaluation of hydropower station operation: A case study of Longyangxia station in the Yellow River, China," Energy, Elsevier, vol. 135(C), pages 23-31.
    6. Ibanez, Eduardo & Magee, Timothy & Clement, Mitch & Brinkman, Gregory & Milligan, Michael & Zagona, Edith, 2014. "Enhancing hydropower modeling in variable generation integration studies," Energy, Elsevier, vol. 74(C), pages 518-528.
    7. Cai, Y.P. & Huang, G.H. & Tan, Q. & Liu, L., 2011. "An integrated approach for climate-change impact analysis and adaptation planning under multi-level uncertainties. Part II. Case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3051-3073, August.
    8. Liu, Lirong & Huang, Guohe & Baetz, Brian & Guan, Yuru & Zhang, Kaiqiang, 2020. "Multi-Dimensional Hypothetical Fuzzy Risk Simulation model for Greenhouse Gas mitigation policy development," Applied Energy, Elsevier, vol. 261(C).
    9. Huang, Guo H. & Baetz, Brian W. & Patry, Gilles G., 1995. "Grey integer programming: An application to waste management planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 83(3), pages 594-620, June.
    10. Wang, Yongpei & Yan, Weilong & Zhuang, Shangwen & Zhang, Qian, 2019. "Competition or complementarity ? The hydropower and thermal power nexus in China," Renewable Energy, Elsevier, vol. 138(C), pages 531-541.
    11. Xinshuo Zhang & Guangwen Ma & Weibin Huang & Shijun Chen & Shuai Zhang, 2018. "Short-Term Optimal Operation of a Wind-PV-Hydro Complementary Installation: Yalong River, Sichuan Province, China," Energies, MDPI, vol. 11(4), pages 1-19, April.
    12. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2019. "Climate change impacts and adaptation strategies for a hydro-dominated power system via stochastic optimization," Applied Energy, Elsevier, vol. 233, pages 584-598.
    13. Egre, Dominique & Milewski, Joseph C., 2002. "The diversity of hydropower projects," Energy Policy, Elsevier, vol. 30(14), pages 1225-1230, November.
    14. Xia, Liangyu & Zhang, Yabo, 2019. "An overview of world geothermal power generation and a case study on China—The resource and market perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 411-423.
    15. Cai, Y.P. & Huang, G.H. & Tan, Q. & Yang, Z.F., 2011. "An integrated approach for climate-change impact analysis and adaptation planning under multi-level uncertainties. Part I: Methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2779-2790, August.
    16. Zhou, Xiong & Huang, Guohe & Zhu, Hua & Chen, Jiapei & Xu, Jinliang, 2015. "Chance-constrained two-stage fractional optimization for planning regional energy systems in British Columbia, Canada," Applied Energy, Elsevier, vol. 154(C), pages 663-677.
    17. Chen, J.P. & Huang, G. & Baetz, B.W. & Lin, Q.G. & Dong, C. & Cai, Y.P., 2018. "Integrated inexact energy systems planning under climate change: A case study of Yukon Territory, Canada," Applied Energy, Elsevier, vol. 229(C), pages 493-504.
    18. Song, Tangnyu & Huang, Guohe & Zhou, Xiong & Wang, Xiuquan, 2018. "An inexact two-stage fractional energy systems planning model," Energy, Elsevier, vol. 160(C), pages 275-289.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiaochu Li & Peng Zhang, 2024. "Temporal–Spatial Characteristics of Carbon Emissions and Low-Carbon Efficiency in Sichuan Province, China," Sustainability, MDPI, vol. 16(18), pages 1-28, September.
    2. Bu, Yan & Wang, Erda & Möst, Dominik & Lieberwirth, Martin, 2022. "How population migration affects carbon emissions in China: Factual and counterfactual scenario analysis," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    3. Wang, Xiaokui & Bamisile, Olusola & Chen, Shuheng & Xu, Xiao & Luo, Shihua & Huang, Qi & Hu, Weihao, 2022. "Decarbonization of China's electricity systems with hydropower penetration and pumped-hydro storage: Comparing the policies with a techno-economic analysis," Renewable Energy, Elsevier, vol. 196(C), pages 65-83.
    4. Zhu, Yanmei & Zhou, Yerong & Tao, Xiangming & Chen, Shijun & Huang, Weibin & Ma, Guangwen, 2024. "A new clearing method for cascade hydropower spot market," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Qing & Huang, Guohe & Cai, Yanpeng & Huang, Ying, 2011. "Feasibility-based inexact fuzzy programming for electric power generation systems planning under dual uncertainties," Applied Energy, Elsevier, vol. 88(12), pages 4642-4654.
    2. Cai, Yanpeng & Yue, Wencong & Xu, Linyu & Yang, Zhifeng & Rong, Qiangqiang, 2016. "Sustainable urban water resources management considering life-cycle environmental impacts of water utilization under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 21-40.
    3. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "An interval-valued minimax-regret analysis approach for the identification of optimal greenhouse-gas abatement strategies under uncertainty," Energy Policy, Elsevier, vol. 39(7), pages 4313-4324, July.
    4. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    5. Dong, C. & Huang, G.H. & Cai, Y.P. & Liu, Y., 2012. "An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city," Energy, Elsevier, vol. 37(1), pages 673-688.
    6. Chen, J.P. & Huang, G. & Baetz, B.W. & Lin, Q.G. & Dong, C. & Cai, Y.P., 2018. "Integrated inexact energy systems planning under climate change: A case study of Yukon Territory, Canada," Applied Energy, Elsevier, vol. 229(C), pages 493-504.
    7. Ye Liu & Guohe Huang & Yanpeng Cai & Cong Dong, 2011. "An Inexact Mix-Integer Two-Stage Linear Programming Model for Supporting the Management of a Low-Carbon Energy System in China," Energies, MDPI, vol. 4(10), pages 1-30, October.
    8. Wang, Xingwei & Cai, Yanpeng & Dai, Chao, 2014. "Evaluating China's biomass power production investment based on a policy benefit real options model," Energy, Elsevier, vol. 73(C), pages 751-761.
    9. Cai, Y.P. & Huang, G.H. & Tan, Q. & Yang, Z.F., 2011. "An integrated approach for climate-change impact analysis and adaptation planning under multi-level uncertainties. Part I: Methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2779-2790, August.
    10. Li, Y.F. & Li, Y.P. & Huang, G.H. & Chen, X., 2010. "Energy and environmental systems planning under uncertainty--An inexact fuzzy-stochastic programming approach," Applied Energy, Elsevier, vol. 87(10), pages 3189-3211, October.
    11. Chen, Yizhong & Lu, Hongwei & Li, Jing & Huang, Guohe & He, Li, 2016. "Regional planning of new-energy systems within multi-period and multi-option contexts: A case study of Fengtai, Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 356-372.
    12. Shaban Boloukat, Mohammad Hadi & Akbari Foroud, Asghar, 2016. "Stochastic-based resource expansion planning for a grid-connected microgrid using interval linear programming," Energy, Elsevier, vol. 113(C), pages 776-787.
    13. Li, Zhong & Huang, Gordon & Zhang, Yimei & Li, Yongping, 2013. "Inexact two-stage stochastic credibility constrained programming for water quality management," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 122-132.
    14. Dong, Cong & Huang, Guohe & Cai, Yanpeng & Li, Wei & Cheng, Guanhui, 2014. "Fuzzy interval programming for energy and environmental systems management under constraint-violation and energy-substitution effects: A case study for the City of Beijing," Energy Economics, Elsevier, vol. 46(C), pages 375-394.
    15. Cai, Y.P. & Huang, G.H. & Tan, Q. & Chen, B., 2011. "Identification of optimal strategies for improving eco-resilience to floods in ecologically vulnerable regions of a wetland," Ecological Modelling, Elsevier, vol. 222(2), pages 360-369.
    16. Dong, C. & Huang, G.H. & Cai, Y.P. & Xu, Y., 2011. "An interval-parameter minimax regret programming approach for power management systems planning under uncertainty," Applied Energy, Elsevier, vol. 88(8), pages 2835-2845, August.
    17. Luo, Bin & Huang, Guohe & Chen, Jiapei & Zhang, Xiaoyue & Zhao, Kai, 2021. "A chance-constrained small modular reactor siting model -- a case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    18. Annika Styczynski & Jedamiah Wolf & Somdatta Tah & Arnab Bose, 2014. "When decision-making processes fail: an argument for robust climate adaptation planning in the face of uncertainty," Environment Systems and Decisions, Springer, vol. 34(4), pages 478-491, December.
    19. Chunguang Bai & Joseph Sarkis, 2013. "Green information technology strategic justification and evaluation," Information Systems Frontiers, Springer, vol. 15(5), pages 831-847, November.
    20. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:168:y:2021:i:c:p:1096-1111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.