IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v13y2009i8p1836-1853.html
   My bibliography  Save this article

A dynamic inexact energy systems planning model for supporting greenhouse-gas emission management and sustainable renewable energy development under uncertainty--A case study for the City of Waterloo, Canada

Author

Listed:
  • Lin, Q.G.
  • Huang, G.H.

Abstract

In this study, a dynamic interval-parameter community-scale energy systems planning model (DIP-CEM) was developed for supporting greenhouse-gas emission (GHG) management and sustainable energy development under uncertainty. The developed model could reach insight into the interactive characteristics of community-scale energy management systems, and thus capable of addressing specific community environmental and socio-economic features. Through integrating interval-parameter and mixed-integer linear programming techniques within a general optimization framework, the DIP-CEM could address uncertainty (expressed as interval values) existing in related costs, impact factors and system objectives as well as facilitate dynamic analysis of capacity-expansion decisions under such a uncertainty. DIP-CEM was then applied to the City of Waterloo, Canada to demonstrate its applicability in supporting decisions of community energy systems planning and GHG-emission reduction management. One business-as-usual (BAU) case and two GHG-emission reduction cases were analyzed with desired plans of GHG-emission reduction. The results indicated that the developed DIP-CEM could help provide sound strategies for dealing with issues of sustainable energy development and GHG-emission reduction within an energy management system.

Suggested Citation

  • Lin, Q.G. & Huang, G.H., 2009. "A dynamic inexact energy systems planning model for supporting greenhouse-gas emission management and sustainable renewable energy development under uncertainty--A case study for the City of Waterloo,," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1836-1853, October.
  • Handle: RePEc:eee:rensus:v:13:y:2009:i:8:p:1836-1853
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(09)00036-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sadeghi, Mehdi & Mirshojaeian Hosseini, Hossein, 2006. "Energy supply planning in Iran by using fuzzy linear programming approach (regarding uncertainties of investment costs)," Energy Policy, Elsevier, vol. 34(9), pages 993-1003, June.
    2. Huang, G. H. & Baetz, B. W. & Patry, G. G., 1995. "Grey fuzzy integer programming: An application to regional waste management planning under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 29(1), pages 17-38, March.
    3. Chang-Qing Li & Paul Suding & Chang Qing & Zheng Yan, 2004. "A study on integrated programming model of urban energy supplying based on sustainable development," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 22(2/3/4), pages 99-118.
    4. Lin, Q.G. & Huang, G.H. & Bass, B. & Qin, X.S., 2009. "IFTEM: An interval-fuzzy two-stage stochastic optimization model for regional energy systems planning under uncertainty," Energy Policy, Elsevier, vol. 37(3), pages 868-878, March.
    5. Huang, Guo H. & Baetz, Brian W. & Patry, Gilles G., 1995. "Grey integer programming: An application to waste management planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 83(3), pages 594-620, June.
    6. Nilsson, J. Stenlund & Mårtensson, A., 2003. "Municipal energy-planning and development of local energy-systems," Applied Energy, Elsevier, vol. 76(1-3), pages 179-187, September.
    7. Barreto, Leonardo & Kypreos, Socrates, 2004. "Emissions trading and technology deployment in an energy-systems "bottom-up" model with technology learning," European Journal of Operational Research, Elsevier, vol. 158(1), pages 243-261, October.
    8. Muela, E. & Schweickardt, G. & Garces, F., 2007. "Fuzzy possibilistic model for medium-term power generation planning with environmental criteria," Energy Policy, Elsevier, vol. 35(11), pages 5643-5655, November.
    9. Borges, Ana Rosa & Antunes, Carlos Henggeler, 2003. "A fuzzy multiple objective decision support model for energy-economy planning," European Journal of Operational Research, Elsevier, vol. 145(2), pages 304-316, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, G.C. & Huang, G.H. & Sun, W. & Ding, X.W., 2014. "An inexact optimization model for energy-environment systems management in the mixed fuzzy, dual-interval and stochastic environment," Renewable Energy, Elsevier, vol. 64(C), pages 153-163.
    2. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "Planning regional energy system in association with greenhouse gas mitigation under uncertainty," Applied Energy, Elsevier, vol. 88(3), pages 599-611, March.
    3. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    4. Iqbal, M. & Azam, M. & Naeem, M. & Khwaja, A.S. & Anpalagan, A., 2014. "Optimization classification, algorithms and tools for renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 640-654.
    5. Mahmoudimehr, Javad & Sebghati, Parvin, 2019. "A novel multi-objective Dynamic Programming optimization method: Performance management of a solar thermal power plant as a case study," Energy, Elsevier, vol. 168(C), pages 796-814.
    6. Weng, Xuemeng & Xuan, Ping & Heidari, Ali Asghar & Cai, Zhennao & Chen, Huiling & Mansour, Romany F. & Ragab, Mahmoud, 2023. "A vertical and horizontal crossover sine cosine algorithm with pattern search for optimal power flow in power systems," Energy, Elsevier, vol. 271(C).
    7. Lin, Q.G. & Huang, G.H., 2010. "An inexact two-stage stochastic energy systems planning model for managing greenhouse gas emission at a municipal level," Energy, Elsevier, vol. 35(5), pages 2270-2280.
    8. Wang, Jingjing & Zhao, Xian & Guo, Xiaoxin, 2019. "Optimizing wind turbine's maintenance policies under performance-based contract," Renewable Energy, Elsevier, vol. 135(C), pages 626-634.
    9. Li, G.C. & Huang, G.H. & Lin, Q.G. & Zhang, X.D. & Tan, Q. & Chen, Y.M., 2011. "Development of a GHG-mitigation oriented inexact dynamic model for regional energy system management," Energy, Elsevier, vol. 36(5), pages 3388-3398.
    10. Nkosi, Mfundo & Dikgang, Johane & Kutela Gelo, Dambala & Pholo, Alain, 2021. "Greening the vehicle fleet, how does South Africa’s tax reforms affect new car sales," EconStor Preprints 236726, ZBW - Leibniz Information Centre for Economics.
    11. Lin, Q.G. & Huang, G.H., 2009. "Planning of energy system management and GHG-emission control in the Municipality of Beijing--An inexact-dynamic stochastic programming model," Energy Policy, Elsevier, vol. 37(11), pages 4463-4473, November.
    12. Soroudi, Alireza & Ehsan, Mehdi, 2011. "A possibilistic-probabilistic tool for evaluating the impact of stochastic renewable and controllable power generation on energy losses in distribution networks--A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 794-800, January.
    13. Zhu, Y. & Li, Y.P. & Huang, G.H., 2013. "Planning carbon emission trading for Beijing's electric power systems under dual uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 113-128.
    14. Luhang Lin & Yinzi Fan & Meilian Xu & Chuanwang Sun, 2017. "A Decomposition Analysis of Embodied Energy Consumption in China’s Construction Industry," Sustainability, MDPI, vol. 9(9), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, C. & Huang, G.H. & Cai, Y.P. & Liu, Y., 2012. "An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city," Energy, Elsevier, vol. 37(1), pages 673-688.
    2. Li, Y.F. & Li, Y.P. & Huang, G.H. & Chen, X., 2010. "Energy and environmental systems planning under uncertainty--An inexact fuzzy-stochastic programming approach," Applied Energy, Elsevier, vol. 87(10), pages 3189-3211, October.
    3. Dong, C. & Huang, G.H. & Cai, Y.P. & Xu, Y., 2011. "An interval-parameter minimax regret programming approach for power management systems planning under uncertainty," Applied Energy, Elsevier, vol. 88(8), pages 2835-2845, August.
    4. Lin, Q.G. & Huang, G.H. & Bass, B. & Qin, X.S., 2009. "IFTEM: An interval-fuzzy two-stage stochastic optimization model for regional energy systems planning under uncertainty," Energy Policy, Elsevier, vol. 37(3), pages 868-878, March.
    5. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "An interval-valued minimax-regret analysis approach for the identification of optimal greenhouse-gas abatement strategies under uncertainty," Energy Policy, Elsevier, vol. 39(7), pages 4313-4324, July.
    6. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    7. Cao, M.F. & Huang, G.H. & Lin, Q.G., 2010. "Integer programming with random-boundary intervals for planning municipal power systems," Applied Energy, Elsevier, vol. 87(8), pages 2506-2516, August.
    8. Li, Y.F. & Huang, G.H. & Li, Y.P. & Xu, Y. & Chen, W.T., 2010. "Regional-scale electric power system planning under uncertainty--A multistage interval-stochastic integer linear programming approach," Energy Policy, Elsevier, vol. 38(1), pages 475-490, January.
    9. Hu, Qing & Huang, Guohe & Cai, Yanpeng & Huang, Ying, 2011. "Feasibility-based inexact fuzzy programming for electric power generation systems planning under dual uncertainties," Applied Energy, Elsevier, vol. 88(12), pages 4642-4654.
    10. Chen, C. & Li, Y.P. & Huang, G.H., 2016. "Interval-fuzzy municipal-scale energy model for identification of optimal strategies for energy management – A case study of Tianjin, China," Renewable Energy, Elsevier, vol. 86(C), pages 1161-1177.
    11. Lin, Q.G. & Huang, G.H., 2009. "Planning of energy system management and GHG-emission control in the Municipality of Beijing--An inexact-dynamic stochastic programming model," Energy Policy, Elsevier, vol. 37(11), pages 4463-4473, November.
    12. Chen, Yizhong & Lu, Hongwei & Li, Jing & Huang, Guohe & He, Li, 2016. "Regional planning of new-energy systems within multi-period and multi-option contexts: A case study of Fengtai, Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 356-372.
    13. Gaiqiang Yang & Ping Guo & Mo Li & Shiqi Fang & Liudong Zhang, 2016. "An Improved Solving Approach for Interval-Parameter Programming and Application to an Optimal Allocation of Irrigation Water Problem," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 701-729, January.
    14. Wang, Xingwei & Cai, Yanpeng & Chen, Jiajun & Dai, Chao, 2013. "A grey-forecasting interval-parameter mixed-integer programming approach for integrated electric-environmental management–A case study of Beijing," Energy, Elsevier, vol. 63(C), pages 334-344.
    15. Zhou, Y. & Li, Y.P. & Huang, G.H., 2015. "Planning sustainable electric-power system with carbon emission abatement through CDM under uncertainty," Applied Energy, Elsevier, vol. 140(C), pages 350-364.
    16. Zhu, Y. & Li, Y.P. & Huang, G.H. & Fan, Y.R. & Nie, S., 2015. "A dynamic model to optimize municipal electric power systems by considering carbon emission trading under uncertainty," Energy, Elsevier, vol. 88(C), pages 636-649.
    17. Gaiqiang Yang & Ping Guo & Mo Li & Shiqi Fang & Liudong Zhang, 2016. "An Improved Solving Approach for Interval-Parameter Programming and Application to an Optimal Allocation of Irrigation Water Problem," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 701-729, January.
    18. Dong, Cong & Huang, Guohe & Cai, Yanpeng & Li, Wei & Cheng, Guanhui, 2014. "Fuzzy interval programming for energy and environmental systems management under constraint-violation and energy-substitution effects: A case study for the City of Beijing," Energy Economics, Elsevier, vol. 46(C), pages 375-394.
    19. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Tan, Q., 2009. "Identification of optimal strategies for energy management systems planning under multiple uncertainties," Applied Energy, Elsevier, vol. 86(4), pages 480-495, April.
    20. Q. Lin & G. Huang, 2011. "Interval-fuzzy stochastic optimization for regional energy systems planning and greenhouse-gas emission management under uncertainty—a case study for the Province of Ontario, Canada," Climatic Change, Springer, vol. 104(2), pages 353-378, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:13:y:2009:i:8:p:1836-1853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.