IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v24y2010i12p3115-3144.html
   My bibliography  Save this article

Simulation of Agricultural Management Alternatives for Watershed Protection

Author

Listed:
  • Pushpa Tuppad
  • Narayanan Kannan
  • Raghavan Srinivasan
  • Colleen Rossi
  • Jeffrey Arnold

Abstract

The Bosque River Watershed in Texas is facing a suite of water quality issues including excess sediment, nutrient, and bacteria. The sources of the pollutants are improperly managed cropland and grazing land, dairy manure application, and effluent discharge from wastewater treatment facilities. Several best management practices (BMPs) have been proposed for pollution reduction and watershed protection. The overall objectives of this study were to demonstrate a modeling approach using Soil and Water Assessment Tool (SWAT) model to simulate various BMPs and assess their long-term impacts on sediment and nutrient loads at different spatial levels. The SWAT model was calibrated and validated for long-term annual and monthly flows at Valley Mills and for monthly sediment, total nitrogen (TN) and total phosphorus (TP) at Hico and Valley Mills monitoring locations. The BMPs including streambank stabilization, gully plugs, recharge structures, conservation tillage, terraces, contour farming, manure incorporation, filter strips, and PL-566 reservoirs were simulated in the watershed areas that met the respective practice’s specific criteria for implementation. These BMPs were represented in the pre- and post-conditions by modifying one or more channel parameters (channel cover, erodibility, Manning’s n), curve number (CN), support practice factor (P-factor), filter strip width, and tillage parameters (mixing efficiency, mixing depth). The BMPs were simulated individually and the resulting Hydrologic Response Units (HRUs), subwatershed, and watershed level impacts were quantified for each BMP. Sensitivity of model output values to input parameters used to represent the BMPs was also evaluated. Implementing individual BMPs reduced sediment loads from 3% to 37% and TN loads from 1% to 24% at the watershed outlet; however, the changes in TP loads ranged from 3% increase to 30% decrease. Higher reductions were simulated at the subwatershed and HRU levels. Among the parameters analyzed for sensitivity, P-factor and CN were most sensitive followed by Manning’s n. The TN and TP outputs were not sensitive to channel cover. This study showed that the SWAT modeling approach could be used to simulate and assess the effectiveness of agricultural best management practices. Copyright Springer Science+Business Media B.V. 2010

Suggested Citation

  • Pushpa Tuppad & Narayanan Kannan & Raghavan Srinivasan & Colleen Rossi & Jeffrey Arnold, 2010. "Simulation of Agricultural Management Alternatives for Watershed Protection," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 3115-3144, September.
  • Handle: RePEc:spr:waterr:v:24:y:2010:i:12:p:3115-3144
    DOI: 10.1007/s11269-010-9598-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-010-9598-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-010-9598-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parajuli, P.B. & Mankin, K.R. & Barnes, P.L., 2008. "Applicability of targeting vegetative filter strips to abate fecal bacteria and sediment yield using SWAT," Agricultural Water Management, Elsevier, vol. 95(10), pages 1189-1200, October.
    2. Humberto Silva-Hidalgo & Ignacio Martín-Domínguez & María Alarcón-Herrera & Alfredo Granados-Olivas, 2009. "Mathematical Modelling for the Integrated Management of Water Resources in Hydrological Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 721-730, March.
    3. Gassman, Philip W. & Reyes, Manuel R. & Green, Colleen H. & Arnold, Jeffrey G., 2007. "The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions," ISU General Staff Papers 200701010800001027, Iowa State University, Department of Economics.
    4. Hagen Koch & Uwe Grünewald, 2009. "A Comparison of Modelling Systems for the Development and Revision of Water Resources Management Plans," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(7), pages 1403-1422, May.
    5. Manoj Jha & Philip W. Gassman & Silvia Secchi & Roy Gu & Jeffrey G. Arnold, 2002. "Effect of Watershed Subdivision on SWAT Flow, Sediment, and Nutrient Predictions," Center for Agricultural and Rural Development (CARD) Publications 02-wp315, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    6. Secchi, Silvia & Kling, Catherine L. & Feng, Hongli & Gassman, Philip W. & Jha, Manoj & Campbell, Todd & Kurkalova, Lyubov A., 2007. "The Cost of Cleaner Water: Assessing Agricultural Pollution Reduction at the Watershed Scale," Staff General Research Papers Archive 12723, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. George Atisa & Mahadev Bhat & Michael McClain, 2014. "Economic Assessment of Best Management Practices in the Mara River Basin: Toward Implementing Payment for Watershed Services," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1751-1766, April.
    2. Oduor, Brian Omondi & Campo-Bescós, Miguel Ángel & Lana-Renault, Noemí & Kyllmar, Katarina & Mårtensson, Kristina & Casalí, Javier, 2023. "Quantification of agricultural best management practices impacts on sediment and phosphorous export in a small catchment in southeastern Sweden," Agricultural Water Management, Elsevier, vol. 290(C).
    3. Olufemi Abimbola & Aaron Mittelstet & Tiffany Messer & Elaine Berry & Ann van Griensven, 2020. "Modeling and Prioritizing Interventions Using Pollution Hotspots for Reducing Nutrients, Atrazine and E. coli Concentrations in a Watershed," Sustainability, MDPI, vol. 13(1), pages 1-22, December.
    4. Dechmi, F. & Skhiri, A., 2013. "Evaluation of best management practices under intensive irrigation using SWAT model," Agricultural Water Management, Elsevier, vol. 123(C), pages 55-64.
    5. Nina Noreika & Tailin Li & Julie Winterova & Josef Krasa & Tomas Dostal, 2022. "The Effects of Agricultural Conservation Practices on the Small Water Cycle: From the Farm- to the Management-Scale," Land, MDPI, vol. 11(5), pages 1-16, May.
    6. Jeong, Hanseok & Adamowski, Jan, 2016. "A system dynamics based socio-hydrological model for agricultural wastewater reuse at the watershed scale," Agricultural Water Management, Elsevier, vol. 171(C), pages 89-107.
    7. Wallace, Carlington W. & Flanagan, Dennis C. & Engel, Bernard A., 2017. "Quantifying the effects of conservation practice implementation on predicted runoff and chemical losses under climate change," Agricultural Water Management, Elsevier, vol. 186(C), pages 51-65.
    8. Prakash Kaini & Kim Artita & John Nicklow, 2012. "Optimizing Structural Best Management Practices Using SWAT and Genetic Algorithm to Improve Water Quality Goals," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1827-1845, May.
    9. Pignalosa, Antonio & Silvestri, Nicola & Pugliese, Francesco & Corniello, Alfonso & Gerundo, Carlo & Del Seppia, Nicola & Lucchesi, Massimo & Coscini, Nicola & De Paola, Francesco & Giugni, Maurizio, 2022. "Long-term simulations of Nature-Based Solutions effects on runoff and soil losses in a flat agricultural area within the catchment of Lake Massaciuccoli (Central Italy)," Agricultural Water Management, Elsevier, vol. 273(C).
    10. Wu, Yiping & Chen, Ji, 2013. "Estimating irrigation water demand using an improved method and optimizing reservoir operation for water supply and hydropower generation: A case study of the Xinfengjiang reservoir in southern China," Agricultural Water Management, Elsevier, vol. 116(C), pages 110-121.
    11. Azar Sheikhzeinoddin & Abdoulkarim Esmaeili, 2017. "Ecological and economic impacts of different irrigation and fertilization practices: case study of a watershed in the southern Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2499-2515, December.
    12. Jinkang Du & Hanyi Rui & Tianhui Zuo & Qian Li & Dapeng Zheng & Ailing Chen & Youpeng Xu & C.-Y. Xu, 2013. "Hydrological Simulation by SWAT Model with Fixed and Varied Parameterization Approaches Under Land Use Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2823-2838, June.
    13. Maharjan, Ganga Ram & Ruidisch, Marianne & Shope, Christopher L. & Choi, Kwanghun & Huwe, Bernd & Kim, Seong Joon & Tenhunen, John & Arnhold, Sebastian, 2016. "Assessing the effectiveness of split fertilization and cover crop cultivation in order to conserve soil and water resources and improve crop productivity," Agricultural Water Management, Elsevier, vol. 163(C), pages 305-318.
    14. Yiannis Panagopoulos & Christos Makropoulos & Maria Mimikou, 2011. "Diffuse Surface Water Pollution: Driving Factors for Different Geoclimatic Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3635-3660, November.
    15. Ricci, G.F. & Jeong, J. & De Girolamo, A.M. & Gentile, F., 2020. "Effectiveness and feasibility of different management practices to reduce soil erosion in an agricultural watershed," Land Use Policy, Elsevier, vol. 90(C).
    16. Dipesh Nepal & Prem B. Parajuli, 2022. "Assessment of Best Management Practices on Hydrology and Sediment Yield at Watershed Scale in Mississippi Using SWAT," Agriculture, MDPI, vol. 12(4), pages 1-19, April.
    17. Everton Rocha & Maria Calijuri & Aníbal Santiago & Leonardo Assis & Luna Alves, 2012. "The Contribution of Conservation Practices in Reducing Runoff, Soil Loss, and Transport of Nutrients at the Watershed Level," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3831-3852, October.
    18. Guidotti, Vinicius & Ferraz, Silvio Frosini de Barros & Pinto, Luis Fernando Guedes & Sparovek, Gerd & Taniwaki, Ricardo H. & Garcia, Lara Gabrielle & Brancalion, Pedro H.S., 2020. "Changes in Brazil’s Forest Code can erode the potential of riparian buffers to supply watershed services," Land Use Policy, Elsevier, vol. 94(C).
    19. Özcan, Zeynep & Kentel, Elçin & Alp, Emre, 2017. "Evaluation of the best management practices in a semi-arid region with high agricultural activity," Agricultural Water Management, Elsevier, vol. 194(C), pages 160-171.
    20. Ricci, Giovanni Francesco & D’Ambrosio, Ersilia & De Girolamo, Anna Maria & Gentile, Francesco, 2022. "Efficiency and feasibility of Best Management Practices to reduce nutrient loads in an agricultural river basin," Agricultural Water Management, Elsevier, vol. 259(C).
    21. Sanjeet Kumar & Ashok Mishra, 2015. "Critical Erosion Area Identification Based on Hydrological Response Unit Level for Effective Sedimentation Control in a River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1749-1765, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catherine L. Kling & Yiannis Panagopoulos & Adriana Valcu-Lisman & Philip W. Gassman & Sergey Rabotyagov & Todd Campbell & Mike White & Jeffrey G. Arnold & Raghavan Srinivasan & Manoj Jha & Jeff Richa, 2014. "Land Use Model Integrating Agriculture and the Environment (LUMINATE): Linkages between Agricultural Land Use, Local Water Quality and Hypoxic Concerns in the Gulf of Mexico Basin," Center for Agricultural and Rural Development (CARD) Publications 14-wp546, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    2. repec:bla:canjag:v:58:y:2010:i:s1:p:411-431 is not listed on IDEAS
    3. Feng, Hongli & Jha, Manoj & Gassman, Philip W. & Parcel, Joshua D., 2007. "A Recent Trend in Ecological Economic Research: Quantifying the Benefits and Costs of Improving Ecosystem Services," ISU General Staff Papers 200701010800001812, Iowa State University, Department of Economics.
    4. Catherine L. Kling & Yiannis Panagopoulos & Sergey S. Rabotyagov & Adriana M. Valcu & Philip W. Gassman & Todd Campbell & Michael J. White & Jeffrey G. Arnold & Raghavan Srinivasan & Manoj K. Jha & Je, 2014. "LUMINATE: linking agricultural land use, local water quality and Gulf of Mexico hypoxia," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 41(3), pages 431-459.
    5. Manish Kumar Goyal & Venkatesh K. Panchariya & Ashutosh Sharma & Vishal Singh, 2018. "Comparative Assessment of SWAT Model Performance in two Distinct Catchments under Various DEM Scenarios of Varying Resolution, Sources and Resampling Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 805-825, January.
    6. Rabotyagov, Sergey S., 2007. "Four essays on environmental policy under uncertainty with applications to water quality and carbon sequestration," ISU General Staff Papers 2007010108000016610, Iowa State University, Department of Economics.
    7. Everton Rocha & Maria Calijuri & Aníbal Santiago & Leonardo Assis & Luna Alves, 2012. "The Contribution of Conservation Practices in Reducing Runoff, Soil Loss, and Transport of Nutrients at the Watershed Level," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3831-3852, October.
    8. Egbendewe-Mondzozo, Aklesso & Swinton, Scott M. & Bals, Bryan D. & Dale, Bruce E., 2011. "Can Dispersed Biomass Processing Protect the Environment and Cover the Bottom Line for Biofuel?," Staff Paper Series 119348, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    9. Andersson, Jafet C.M. & Zehnder, Alexander J.B. & Rockström, Johan & Yang, Hong, 2011. "Potential impacts of water harvesting and ecological sanitation on crop yield, evaporation and river flow regimes in the Thukela River basin, South Africa," Agricultural Water Management, Elsevier, vol. 98(7), pages 1113-1124, May.
    10. Hongxing Liu & Wendong Zhang & Elena Irwin & Jeffrey Kast & Noel Aloysius & Jay Martin & Margaret Kalcic, 2020. "Best Management Practices and Nutrient Reduction: An Integrated Economic-Hydrologic Model of the Western Lake Erie Basin," Land Economics, University of Wisconsin Press, vol. 96(4), pages 510-530.
    11. Medwid, Laura J. & Lambert, Dayton M. & Clark, Christopher D. & Hawkins, Shawn A. & McClellan, Hannah A., 2016. "Estimating Soil Loss Abatement Curves with Primary Survey Data and Hydrologic Models: An Empirical Example for Livestock Production in an East Tennessee Watershed," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230052, Southern Agricultural Economics Association.
    12. Catherine L. Kling & Raymond W. Arritt & Gray Calhoun & David A. Keiser, 2016. "Research Needs and Challenges in the FEW System: Coupling Economic Models with Agronomic, Hydrologic, and Bioenergy Models for Sustainable Food, Energy, and Water Systems," Center for Agricultural and Rural Development (CARD) Publications 16-wp563, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    13. Alan F. Hamlet & Nima Ehsani & Jennifer L. Tank & Zachariah Silver & Kyuhyun Byun & Ursula H. Mahl & Shannon L. Speir & Matt T. Trentman & Todd V. Royer, 2024. "Effects of climate and winter cover crops on nutrient loss in agricultural watersheds in the midwestern U.S," Climatic Change, Springer, vol. 177(1), pages 1-21, January.
    14. Negar Tayebzadeh Moghadam & Karim C. Abbaspour & Bahram Malekmohammadi & Mario Schirmer & Ahmad Reza Yavari, 2021. "Spatiotemporal Modelling of Water Balance Components in Response to Climate and Landuse Changes in a Heterogeneous Mountainous Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 793-810, February.
    15. Yates, Andrew J. & Doyle, Martin W. & Rigby, J.R. & Schnier, Kurt E., 2013. "Market power, private information, and the optimal scale of pollution permit markets with application to North Carolina's Neuse River," Resource and Energy Economics, Elsevier, vol. 35(3), pages 256-276.
    16. Eini, Mohammad Reza & Salmani, Haniyeh & Piniewski, Mikołaj, 2023. "Comparison of process-based and statistical approaches for simulation and projections of rainfed crop yields," Agricultural Water Management, Elsevier, vol. 277(C).
    17. Jeong, Hanseok & Kim, Hakkwan & Jang, Taeil & Park, Seungwoo, 2016. "Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model," Agricultural Water Management, Elsevier, vol. 163(C), pages 393-402.
    18. S. K. Aryal & S. Ashbolt & B. S. McIntosh & K. P. Petrone & S. Maheepala & R. K. Chowdhury & T. Gardener & R. Gardiner, 2016. "Assessing and Mitigating the Hydrological Impacts of Urbanisation in Semi-Urban Catchments Using the Storm Water Management Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5437-5454, November.
    19. Lingcheng Li & Liping Zhang & Jun Xia & Christopher Gippel & Renchao Wang & Sidong Zeng, 2015. "Implications of Modelled Climate and Land Cover Changes on Runoff in the Middle Route of the South to North Water Transfer Project in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2563-2579, June.
    20. Guoping Zhang & Mwanjalolo J.G. Majaliwa & Jian Xie, 2020. "Leveraging the Landscape," World Bank Publications - Reports 33911, The World Bank Group.
    21. Kotchakarn Nantasaksiri & Patcharawat Charoen-Amornkitt & Takashi Machimura, 2021. "Land Potential Assessment of Napier Grass Plantation for Power Generation in Thailand Using SWAT Model. Model Validation and Parameter Calibration," Energies, MDPI, vol. 14(5), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:24:y:2010:i:12:p:3115-3144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.