IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v23y2009i4p721-730.html
   My bibliography  Save this article

Mathematical Modelling for the Integrated Management of Water Resources in Hydrological Basins

Author

Listed:
  • Humberto Silva-Hidalgo
  • Ignacio Martín-Domínguez
  • María Alarcón-Herrera
  • Alfredo Granados-Olivas

Abstract

Mathematical models are tools that can facilitate the instrumentation of the Integrated Water Resources Management (IWRM). The first basin models to be developed were completely hydrological; today, due to the urgent need to plan the sustainable use of water resources, new models are needed that in addition to hydrology also incorporate social, economic, legal, environmental and other aspects. The objective of this work was to identify the characteristics that mathematical basin models must have in order to satisfy the requirements of IWRM. To achieve this, the conclusions of the main international conferences on water and the environment were analyzed; these were conferences in which IWRM was promoted as a strategy to face the challenges of both sectors. IWRM considers social participation as a key element in the decision-making process; consequently, the models must be accepted and applied, and their results interpreted, by those who participate in the process even if they are not modelling experts. This requires a change of perspective in the scientific community for the development of new IWRM models, in government institutions regarding their role as water administrators, and in water stakeholders regarding their role as decision-makers. The results of the analysis indicate that models for IWRM must be accessible to non-expert users, integrate different viewpoints, representing adequately the problem to be solved, in addition be flexible and have a structure focused on practical solutions. Copyright Springer Science+Business Media B.V. 2009

Suggested Citation

  • Humberto Silva-Hidalgo & Ignacio Martín-Domínguez & María Alarcón-Herrera & Alfredo Granados-Olivas, 2009. "Mathematical Modelling for the Integrated Management of Water Resources in Hydrological Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 721-730, March.
  • Handle: RePEc:spr:waterr:v:23:y:2009:i:4:p:721-730
    DOI: 10.1007/s11269-008-9296-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-008-9296-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-008-9296-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. I. Heinz & M. Pulido-Velazquez & J. Lund & J. Andreu, 2007. "Hydro-economic Modeling in River Basin Management: Implications and Applications for the European Water Framework Directive," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(7), pages 1103-1125, July.
    2. Johanna Olsson & Lotta Andersson, 2007. "Possibilities and problems with the use of models as a communication tool in water resource management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 97-110, January.
    3. Thomas Berger & Regina Birner & Nancy Mccarthy & JosÉ DíAz & Heidi Wittmer, 2007. "Capturing the complexity of water uses and water users within a multi-agent framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 129-148, January.
    4. Martin Volk & Jesko Hirschfeld & Gerd Schmidt & Carsten Bohn & Alexandra Dehnhardt & Stefan Liersch & Leo Lymburner, 2007. "A SDSS-based Ecological-economic Modelling Approach for Integrated River Basin Management on Different Scale Levels – The Project FLUMAGIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(12), pages 2049-2061, December.
    5. B. Croke & J. Ticehurst & R. Letcher & J. Norton & L. Newham & A. Jakeman, 2007. "Integrated assessment of water resources: Australian experiences," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 351-373, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edoardo Bertone & Sara Peters Hughes, 2023. "Probabilistic Prediction of Satellite-Derived Water Quality for a Drinking Water Reservoir," Sustainability, MDPI, vol. 15(14), pages 1-14, July.
    2. Pushpa Tuppad & Narayanan Kannan & Raghavan Srinivasan & Colleen Rossi & Jeffrey Arnold, 2010. "Simulation of Agricultural Management Alternatives for Watershed Protection," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 3115-3144, September.
    3. Gema Carmona & Consuelo Varela-Ortega & John Bromley, 2011. "The Use of Participatory Object-Oriented Bayesian Networks and Agro-Economic Models for Groundwater Management in Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1509-1524, March.
    4. Shahin Zandmoghaddam & Ali Nazemi & Elmira Hassanzadeh & Shadi Hatami, 2019. "Representing Local Dynamics of Water Resource Systems through a Data-Driven Emulation Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3579-3594, August.
    5. Beata Ferencz & Jarosław Dawidek, 2021. "Assessment of Spatial and Vertical Variability of Water Quality: Case Study of a Polymictic Polish Lake," IJERPH, MDPI, vol. 18(16), pages 1-13, August.
    6. B. Rousta & S. Araghinejad, 2015. "Development of a Multi Criteria Decision Making Tool for a Water Resources Decision Support System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5713-5727, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. Raadgever & E. Mostert & N. Giesen, 2012. "Learning from Collaborative Research in Water Management Practice," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3251-3266, September.
    2. Roland Barthel & Stephan Janisch & Darla Nickel & Aleksandar Trifkovic & Thomas Hörhan, 2010. "Using the Multiactor-Approach in G lowa-Danube to Simulate Decisions for the Water Supply Sector Under Conditions of Global Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(2), pages 239-275, January.
    3. Bielsa, Jorge & Cazcarro, Ignacio & Sancho, Yolanda, 2011. "Integration of hydrological and economic approaches to water and land management in Mediterranean climates: an initial case study in agriculture," MPRA Paper 36445, University Library of Munich, Germany.
    4. Pamela Katic, 2015. "Groundwater Spatial Dynamics and Endogenous Well Location," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 181-196, January.
    5. Gürlük, Serkan & Ward, Frank A., 2009. "Integrated basin management: Water and food policy options for Turkey," Ecological Economics, Elsevier, vol. 68(10), pages 2666-2678, August.
    6. Guangwei Huang, 2015. "From Water-Constrained to Water-Driven Sustainable Development—A Case of Water Policy Impact Evaluation," Sustainability, MDPI, vol. 7(7), pages 1-15, July.
    7. Kreins, P. & Heidecke, C. & Gömann, H. & Hirt, U. & Wendland, F., 2011. "Möglichkeiten und Grenzen der wissenschaftlichen Politikanalyse zur Umsetzung der Wasserrahmenrichtlinie – Anwendung eines hydro-ökonomischen Modellverbundes für das Weser Einzugsgebiet," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 46, March.
    8. Esteve, Paloma & Varela-Ortega, Consuelo & Blanco-Gutiérrez, Irene & Downing, Thomas E., 2015. "A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture," Ecological Economics, Elsevier, vol. 120(C), pages 49-58.
    9. Lenka Slavíková & Vítězslav Malý & Michael Rost & Lubomír Petružela & Ondřej Vojáček, 2013. "Impacts of Climate Variables on Residential Water Consumption in the Czech Republic," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 365-379, January.
    10. Mehri Abdi-Dehkordi & Omid Bozorg-Haddad & Abdolrahim Salavitabar & Erfan Goharian, 2021. "Developing a sustainability assessment framework for integrated management of water resources systems using distributed zoning and system dynamics approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16246-16282, November.
    11. Malte Grossmann & Ottfried Dietrich, 2012. "Integrated Economic-Hydrologic Assessment of Water Management Options for Regulated Wetlands Under Conditions of Climate Change: A Case Study from the Spreewald (Germany)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 2081-2108, May.
    12. Y. Yang & L. Wang, 2010. "A Review of Modelling Tools for Implementation of the EU Water Framework Directive in Handling Diffuse Water Pollution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1819-1843, July.
    13. Kaveh Madani & Miguel Mariño, 2009. "System Dynamics Analysis for Managing Iran’s Zayandeh-Rud River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2163-2187, September.
    14. Duan Chen & Ruonan Li & Qiuwen Chen & Desuo Cai, 2015. "Deriving Optimal Daily Reservoir Operation Scheme with Consideration of Downstream Ecological Hydrograph Through A Time-Nested Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3371-3386, July.
    15. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    16. Shang, Linmei & Heckelei, Thomas & Gerullis, Maria K. & Börner, Jan & Rasch, Sebastian, 2021. "Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction," Agricultural Systems, Elsevier, vol. 190(C).
    17. Shang, Linmei & Heckelei, Thomas & Börner, Jan & Rasch, Sebastian, 2020. "Adoption and Diffusion of Digital Farming Technologies – Integrating Farm-Level Evidence and System-Level Interaction," 60th Annual Conference, Halle/ Saale, Germany, September 23-25, 2020 305586, German Association of Agricultural Economists (GEWISOLA).
    18. Thomas Spencer & Tihomir Ancev & Jeff Connor, 2009. "Improving Cost Effectiveness of Irrigation Zoning for Salinity Mitigation by Introducing Offsets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 2085-2100, August.
    19. Grovermann, Christian & Schreinemachers, Pepijn & Berger, Thomas, 2015. "Evaluation of IPM adoption and financial instruments to reduce pesticide use in Thai agriculture using econometrics and agent-based modeling," 2015 Conference, August 9-14, 2015, Milan, Italy 211690, International Association of Agricultural Economists.
    20. Wenlin Yuan & Xueyan Yu & Chengguo Su & Denghua Yan & Zening Wu, 2020. "A Multi-Timescale Integrated Operation Model for Balancing Power Generation, Ecology, and Water Supply of Reservoir Operation," Energies, MDPI, vol. 14(1), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:23:y:2009:i:4:p:721-730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.