IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v23y2009i6p1137-1155.html
   My bibliography  Save this article

A GIS-based DRASTIC Model for Assessing Aquifer Vulnerability in Kherran Plain, Khuzestan, Iran

Author

Listed:
  • M. Chitsazan
  • Y. Akhtari

Abstract

The Kherran plain is located in the northeast of Ahwaz in Khuzestan Province, Iran. The state of groundwater pollution is a critical issue with increasing population and agricultural development in Iran. For this reason, vulnerability assessment is an important factor in any policy making decision in any part of country. Focusing on this issue, the article attempts to presents a groundwater vulnerability map for the Kherran plain. The map designed to show areas of highest potential for groundwater pollution based on hydro-geological condition and human impacts. Seven major hydro-geological factors (Depth to water table, net Recharge, Aquifer media, Soil media, Topography, Impact of vadose zone and hydraulic Conductivity) were incorporated into DRASTIC model and geographical information system (GIS) was used to create a groundwater vulnerability map by overlaying the available hydro-geological data. The output map shows that the west and southwest of the aquifer are under medium vulnerability while small areas on northwest and east of the study area have no risk to pollution. Other parts of aquifer have low vulnerability. For testing of the vulnerability assessment, 27 groundwater samples were collected from the different vulnerability zones of the study area. The chemical analysis results show that the southwest and west parts of aquifer (moderate vulnerability zones) have higher nitrate concentration relative to the rest of aquifer, that are located in low vulnerability zone. Copyright Springer Science+Business Media B.V. 2009

Suggested Citation

  • M. Chitsazan & Y. Akhtari, 2009. "A GIS-based DRASTIC Model for Assessing Aquifer Vulnerability in Kherran Plain, Khuzestan, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(6), pages 1137-1155, April.
  • Handle: RePEc:spr:waterr:v:23:y:2009:i:6:p:1137-1155
    DOI: 10.1007/s11269-008-9319-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-008-9319-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-008-9319-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen Foster & Ricardo Hirata & Daniel Gomes & Monica D'Elia & Marta Paris, 2002. "Groundwater Quality Protection : A Guide for Water Utilities, Municipal Authorities, and Environment Agencies," World Bank Publications - Books, The World Bank Group, number 13843.
    2. Madan Jha & Alivia Chowdhury & V. Chowdary & Stefan Peiffer, 2007. "Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(2), pages 427-467, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guigui Xu & Xiaosi Su & Yiwu Zhang & Bing You, 2021. "Identifying Potential Sites for Artificial Recharge in the Plain Area of the Daqing River Catchment Using GIS-Based Multi-Criteria Analysis," Sustainability, MDPI, vol. 13(7), pages 1-15, April.
    2. A. Fadlelmawla & Mahmoud Fayad & Hamdi El-Gamily & Tarik Rashid & Amitabha Mukhopadhyay & Vincent Kotwicki, 2011. "A Land Surface Zoning Approach Based on Three-Component Risk Criteria for Groundwater Quality Protection," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1677-1697, April.
    3. Wenyong Wu & Shiyang Yin & Honglu Liu & Honghan Chen, 2014. "Groundwater Vulnerability Assessment and Feasibility Mapping Under Reclaimed Water Irrigation by a Modified DRASTIC Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1219-1234, March.
    4. Caroline Petit & Audrey Vincent & Philippe Fleury & Amandine Durpoix & Fabienne Barataud, 2016. "Protecting Water from Agricultural Diffuse Pollutions: Between Action Territories and Hydrogeological Demarcation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 295-313, January.
    5. Aminreza Neshat & Biswajeet Pradhan, 2015. "An integrated DRASTIC model using frequency ratio and two new hybrid methods for groundwater vulnerability assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 543-563, March.
    6. Caroline Petit & Audrey Vincent & Philippe Fleury & Amandine Durpoix & Fabienne Barataud, 2016. "Protecting Water from Agricultural Diffuse Pollutions: Between Action Territories and Hydrogeological Demarcation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 295-313, January.
    7. Sina Sadeghfam & Yousef Hassanzadeh & Ata Allah Nadiri & Mahdi Zarghami, 2016. "Localization of Groundwater Vulnerability Assessment Using Catastrophe Theory," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4585-4601, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pennan Chinnasamy & Govindasamy Agoramoorthy, 2015. "Groundwater Storage and Depletion Trends in Tamil Nadu State, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2139-2152, May.
    2. Scott Moore & Joshua Fisher, 2012. "Challenges and Opportunities in GRACE-Based Groundwater Storage Assessment and Management: An Example from Yemen," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1425-1453, April.
    3. Hongnian Chen & Xianfeng Tan & Yan Zhang & Bo Hu & Shuming Xu & Zhenfen Dai & Zhengxuan Zhang & Zhiye Wang & Yawei Zhang, 2023. "Study on Groundwater Function Zoning and Sustainable Development and Utilization in Jining City Planning Area," Sustainability, MDPI, vol. 15(17), pages 1-22, August.
    4. K. R. Rushton & C. S. Silva, 2017. "Abstraction Strategies for Irrigation from Large Diameter Wells," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2257-2270, May.
    5. Gao, Xiaoyu & Huo, Zailin & Xu, Xu & Qu, Zhongyi & Huang, Guanhua & Tang, Pengcheng & Bai, Yining, 2018. "Shallow groundwater plays an important role in enhancing irrigation water productivity in an arid area: The perspective from a regional agricultural hydrology simulation," Agricultural Water Management, Elsevier, vol. 208(C), pages 43-58.
    6. Tarun Kumar & Amar Gautam & Tinu Kumar, 2014. "Appraising the accuracy of GIS-based Multi-criteria decision making technique for delineation of Groundwater potential zones," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4449-4466, October.
    7. Santiago Castaño & David Sanz & Juan Gómez-Alday, 2010. "Methodology for Quantifying Groundwater Abstractions for Agriculture via Remote Sensing and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(4), pages 795-814, March.
    8. Xu Xu & Guanhua Huang & Zhongyi Qu & Luis Pereira, 2011. "Using MODFLOW and GIS to Assess Changes in Groundwater Dynamics in Response to Water Saving Measures in Irrigation Districts of the Upper Yellow River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(8), pages 2035-2059, June.
    9. Xin Zhang & Lin Zhou & Yuqi Liu, 2018. "Modeling Land Use Changes and their Impacts on Non-Point Source Pollution in a Southeast China Coastal Watershed," IJERPH, MDPI, vol. 15(8), pages 1-15, July.
    10. Atul Kumar & Malay Pramanik & Shairy Chaudhary & Mahabir Singh Negi & Sylvia Szabo, 2023. "Geospatial multi-criteria evaluation to identify groundwater potential in a Himalayan District, Rudraprayag, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1519-1560, February.
    11. Jaco Nel & Yongxin Xu & Okke Batelaan & Luc Brendonck, 2009. "Benefit and Implementation of Groundwater Protection Zoning in South Africa," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 2895-2911, November.
    12. Christos Zoumides & Adriana Bruggeman & Theodoros Zachariadis & Stelios Pashiardis, 2013. "Quantifying the Poorly Known Role of Groundwater in Agriculture: the Case of Cyprus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2501-2514, May.
    13. Ranghui Wang & Xinmin Lu, 2009. "Quantitative Estimation Models and Their Application of Ecological Water Use at a Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(7), pages 1351-1365, May.
    14. Jose Expósito & Maria Esteller & Jorge Paredes & Celso Rico & Roberto Franco, 2010. "Groundwater Protection Using Vulnerability Maps and Wellhead Protection Area (WHPA): A Case Study in Mexico," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4219-4236, December.
    15. Fabrizio Ravagnani & Alberto Pellegrinelli & Marco Franchini, 2009. "Estimation of Urban Impervious Fraction from Satellite Images and Its Impact on Peak Discharge Entering a Storm Sewer System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 1893-1915, August.
    16. K. Brindha & L. Elango, 2012. "Impact of Tanning Industries on Groundwater Quality near a Metropolitan City in India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1747-1761, April.
    17. Jha, Madan K. & Chowdary, V.M. & Kulkarni, Y. & Mal, B.C., 2014. "Rainwater harvesting planning using geospatial techniques and multicriteria decision analysis," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 96-111.
    18. Maria Grazia Stoppiello & Giusy Lofrano & Maurizio Carotenuto & Giacomo Viccione & Claudio Guarnaccia & Leonardo Cascini, 2020. "A Comparative Assessment of Analytical Fate and Transport Models of Organic Contaminants in Unsaturated Soils," Sustainability, MDPI, vol. 12(7), pages 1-24, April.
    19. Nagarajan Shanmugavel & Rema Rajendran, 2022. "Adoption of Rainwater Harvesting: a Dual-factor Approach by Integrating Theory of Planned Behaviour and Norm Activation Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2827-2845, June.
    20. A. Alvarado & M. Esteller & E. Quentin & J. Expósito, 2016. "Multi-Criteria Decision Analysis and GIS Approach for Prioritization of Drinking Water Utilities Protection Based on their Vulnerability to Contamination," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1549-1566, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:23:y:2009:i:6:p:1137-1155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.