IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i7p2501-2514.html
   My bibliography  Save this article

Quantifying the Poorly Known Role of Groundwater in Agriculture: the Case of Cyprus

Author

Listed:
  • Christos Zoumides
  • Adriana Bruggeman
  • Theodoros Zachariadis
  • Stelios Pashiardis

Abstract

Agriculture in the Mediterranean region is constrained by limited water resources and in many countries irrigation demand exceeds the renewable water supply. This paper presents a comprehensive approach to (a) quantify the consumptive green (soil moisture provided by precipitation) and blue (irrigation) water use for crop production, (b) distinguish the contribution of groundwater to irrigation supply and (c) estimate groundwater over-abstraction. A spatiotemporally explicit soil water balance model, based on the FAO-56 dual crop coefficient approach, which includes the computation of evaporation losses of the different irrigation systems, was applied to the 5,760-km 2 area of the Republic of Cyprus for the agro-meteorological years 1995–2009. The model uses national agricultural statistics, community-level data from the agricultural census and daily data from 34 meteorological stations and 70 precipitation gauges. Groundwater over-abstraction is quantified per groundwater body, based on the sustainable abstraction rates specified in the Cyprus River Basin Management Plan, as prepared for the EU Water Framework Directive. It was found that, on average, total agricultural water use was 506 Mm 3 /year, of which 62 % is attributed to green water use and 38 % to blue water use. Groundwater contributed, on average, 81 % (151 Mm 3 /year) to blue water use and exceeded the recommended abstraction rates by 45 % (47 Mm 3 /year). Even though the irrigated area decreased by 18 % during the 2008 drought year, relative to the wettest year (2003), total blue water use decreased by only 1 %. The limited surface water supply during the driest year resulted in a 37 % increase in groundwater use, relative to the wettest year, and exceeded the sustainable abstraction rate by 53 % (55 Mm 3 /year). Overall, the model provides objective and quantitative outcomes that can potentially contribute to the improvement of water resource management in Mediterranean environments, in the light of climate change and expected policy reforms. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Christos Zoumides & Adriana Bruggeman & Theodoros Zachariadis & Stelios Pashiardis, 2013. "Quantifying the Poorly Known Role of Groundwater in Agriculture: the Case of Cyprus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2501-2514, May.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:7:p:2501-2514
    DOI: 10.1007/s11269-013-0299-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-013-0299-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-013-0299-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tom Gleeson & Yoshihide Wada & Marc F. P. Bierkens & Ludovicus P. H. van Beek, 2012. "Water balance of global aquifers revealed by groundwater footprint," Nature, Nature, vol. 488(7410), pages 197-200, August.
    2. Ajay Singh, 2012. "Development and Application of a Watertable Model for the Assessment of Waterlogging in Irrigated Semi-arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4435-4448, December.
    3. Aldaya, M.M. & Allan, J.A. & Hoekstra, A.Y., 2010. "Strategic importance of green water in international crop trade," Ecological Economics, Elsevier, vol. 69(4), pages 887-894, February.
    4. Orgaz, F. & Fernandez, M.D. & Bonachela, S. & Gallardo, M. & Fereres, E., 2005. "Evapotranspiration of horticultural crops in an unheated plastic greenhouse," Agricultural Water Management, Elsevier, vol. 72(2), pages 81-96, March.
    5. Rockstrom, J. & Hatibu, N. & Oweis, T. Y. & Wani, S. & Barron, J. & Bruggeman, A. & Farahani, J. & Karlberg, L. & Qiang, Z., 2007. "Managing water in rainfed agriculture," IWMI Books, Reports H040201, International Water Management Institute.
    6. Madan Jha & Alivia Chowdhury & V. Chowdary & Stefan Peiffer, 2007. "Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(2), pages 427-467, February.
    7. Gyoobum Kim, 2010. "Integrated Consideration of Quality and Quantity to Determine Regional Groundwater Monitoring Site in South Korea," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 4009-4032, November.
    8. Bastiaanssen, Wim G. M. & Molden, David J. & Makin, Ian W., 2000. "Remote sensing for irrigated agriculture: examples from research and possible applications," Agricultural Water Management, Elsevier, vol. 46(2), pages 137-155, December.
    9. Bastiaanssen, W.G.M. & Allen, R.G. & Droogers, P. & D'Urso, G. & Steduto, P., 2007. "Twenty-five years modeling irrigated and drained soils: State of the art," Agricultural Water Management, Elsevier, vol. 92(3), pages 111-125, September.
    10. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture," IWMI Books, Reports H040193, International Water Management Institute.
    11. Berbel, J. & Calatrava, J. & Garrido. A., 2007. "Water pricing and irrigation: a review of the European experience," IWMI Books, Reports H040611, International Water Management Institute.
    12. Christos Zoumides & Theodoros Zachariadis, 2009. "Irrigation Water Pricing in Southern Europe and Cyprus: The effects of the EU Common Agricultural Policy and the Water Framework Directive," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 3(1), pages 99-122, June.
    13. Rockström, Johan & Karlberg, Louise & Wani, Suhas P. & Barron, Jennie & Hatibu, Nuhu & Oweis, Theib & Bruggeman, Adriana & Farahani, Jalali & Qiang, Zhu, 2010. "Managing water in rainfed agriculture--The need for a paradigm shift," Agricultural Water Management, Elsevier, vol. 97(4), pages 543-550, April.
    14. Wojciech Rejman, 2007. "EU Water Framework Directive versus Real Needs of Groundwater Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(8), pages 1363-1372, August.
    15. Mutlu Ozdogan & Curtis Woodcock & Guido Salvucci & Hüseyin Demir, 2006. "Changes in Summer Irrigated Crop Area and Water Use in Southeastern Turkey from 1993 to 2002: Implications for Current and Future Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(3), pages 467-488, June.
    16. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary," IWMI Books, Reports H039769, International Water Management Institute.
    17. M. Falkenmark & J. Rockström & L. Karlberg, 2009. "Present and future water requirements for feeding humanity," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 1(1), pages 59-69, February.
    18. Molle, Francois & Berkoff, Jeremy (ed.), 2007. "Irrigation water pricing: the gap between theory and practice," IWMI Books, International Water Management Institute, number 137957.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Cai & Tetsuro Esaki & Shuguang Liu & Yasuhiro Mitani, 2014. "Effect of Substitute Water Projects on Tempo-Spatial Distribution of Groundwater Withdrawals in Chikugo-Saga Plain, Japan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4645-4663, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Facon, T. & Mukherji, Aditi, 2010. "Small-scale irrigation: is this the future?," Conference Papers h043372, International Water Management Institute.
    2. Finger, Robert, 2012. "Modeling the sensitivity of agricultural water use to price variability and climate change—An application to Swiss maize production," Agricultural Water Management, Elsevier, vol. 109(C), pages 135-143.
    3. Nouri, Milad & Homaee, Mehdi & Bannayan, Mohammad & Hoogenboom, Gerrit, 2017. "Towards shifting planting date as an adaptation practice for rainfed wheat response to climate change," Agricultural Water Management, Elsevier, vol. 186(C), pages 108-119.
    4. World Bank [WB], 2016. "High and Dry : Climate Change, Water, and the Economy," Working Papers id:10736, eSocialSciences.
    5. Feng Huang & Baoguo Li, 2020. "What is the Redline Water Withdrawal for Crop Production in China?—Projection to 2030 Derived from the Past Twenty-Year Trajectory," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
    6. Gebreegziabher, Z. & Mekonnen, A. & Beyene, A.D. & Hagos, F., 2018. "Valuation of access to irrigation water in rural Ethiopia: application of choice experiment and contingent valuation methods," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277168, International Association of Agricultural Economists.
    7. Glendenning, C.J. & van Ogtrop, F.F. & Mishra, A.K. & Vervoort, R.W., 2012. "Balancing watershed and local scale impacts of rain water harvesting in India—A review," Agricultural Water Management, Elsevier, vol. 107(C), pages 1-13.
    8. Enfors, Elin & Barron, Jennie & Makurira, Hodson & Rockström, Johan & Tumbo, Siza, 2011. "Yield and soil system changes from conservation tillage in dryland farming: A case study from North Eastern Tanzania," Agricultural Water Management, Elsevier, vol. 98(11), pages 1687-1695, September.
    9. de Fraiture, Charlotte & Wichelns, Dennis, 2010. "Satisfying future water demands for agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 502-511, April.
    10. Independent Evaluation Group, 2010. "Water and Development : An Evaluation of World Bank Support, 1997-2007, Volume 1," World Bank Publications - Books, The World Bank Group, number 2485.
    11. Zorica Srdjevic & Ratko Bajcetic & Bojan Srdjevic, 2012. "Identifying the Criteria Set for Multicriteria Decision Making Based on SWOT/PESTLE Analysis: A Case Study of Reconstructing A Water Intake Structure," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3379-3393, September.
    12. Getnet, Kindie & Pfeifer, Catherine & MacAlister, Charlotte, 2014. "Economic incentives and natural resource management among small-scale farmers: Addressing the missing link," Ecological Economics, Elsevier, vol. 108(C), pages 1-7.
    13. Descheemaeker, K. & Bunting, S. W. & Bindraban, P. & Muthuri, C. & Molden, D. & Beveridge, M. & van Brakel, Martin & Herrero, M. & Clement, Floriane & Boelee, Eline & Jarvis, D. I., 2013. "Increasing water productivity in Agriculture," Book Chapters,, International Water Management Institute.
    14. Santiago Castaño & David Sanz & Juan Gómez-Alday, 2010. "Methodology for Quantifying Groundwater Abstractions for Agriculture via Remote Sensing and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(4), pages 795-814, March.
    15. Mohammed, Adem & Tana, Tamado & Singh, Piara & Molla, Adamu & Seid, Ali, 2017. "Identifying best crop management practices for chickpea (Cicer arietinum L.) in Northeastern Ethiopia under climate change condition," Agricultural Water Management, Elsevier, vol. 194(C), pages 68-77.
    16. Levidow, Les & Zaccaria, Daniele & Maia, Rodrigo & Vivas, Eduardo & Todorovic, Mladen & Scardigno, Alessandra, 2014. "Improving water-efficient irrigation: Prospects and difficulties of innovative practices," Agricultural Water Management, Elsevier, vol. 146(C), pages 84-94.
    17. Mesfin M. Mekonnen & Markus Pahlow & Maite M. Aldaya & Erika Zarate & Arjen Y. Hoekstra, 2015. "Sustainability, Efficiency and Equitability of Water Consumption and Pollution in Latin America and the Caribbean," Sustainability, MDPI, vol. 7(2), pages 1-27, February.
    18. Mahmood, A. & Oweis, T. & Ashraf, M. & Majid, A. & Aftab, M. & Aadal, N.K. & Ahmad, I., 2015. "Performance of improved practices in farmers’ fields under rainfed and supplemental irrigation systems in a semi-arid area of Pakistan," Agricultural Water Management, Elsevier, vol. 155(C), pages 1-10.
    19. Zhao, Jie & Zhang, Xuepeng & Yang, Yadong & Zang, Huadong & Yan, Peng & Meki, Manyowa N. & Doro, Luca & Sui, Peng & Jeong, Jaehak & Zeng, Zhaohai, 2021. "Alternative cropping systems for groundwater irrigation sustainability in the North China Plain," Agricultural Water Management, Elsevier, vol. 250(C).
    20. Lankford, B. & Makin, Ian & Matthews, N. & McCornick, Peter G. & Noble, A. & Shah, Tushaar, "undated". "A compact to revitalise large-scale irrigation systems using a leadership-partnership-ownership 'Theory of Change'," Papers published in Journals (Open Access) H047459, International Water Management Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:7:p:2501-2514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.