IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v26y2012i6p1747-1761.html
   My bibliography  Save this article

Impact of Tanning Industries on Groundwater Quality near a Metropolitan City in India

Author

Listed:
  • K. Brindha
  • L. Elango

Abstract

The present study was carried out with the objective of determining the extent of groundwater pollution caused by tanning industries in Chromepet area located south of Chennai, Tamil Nadu, India. Groundwater samples were collected during January and March 2008 from 36 wells and were analysed for the concentration of various major ions and chromium. Na-Cl was the dominant water type found in this area. Groundwater in this area is not suitable for drinking as it contains elevated concentration of most major ions and chromium. This is due to the recharge of partially treated effluent discharged by tanning industries into open drains. The concentration of chromium was above the permissible limit (0.05 mg/l) in 86% of the groundwater samples. The use of chemicals, such as sodium chloride, sodium sulphate, chromium sulphate etc. during the tanning processes is the major reason for the high concentration of major ions and chromium in groundwater. Hence it is important to regulate the industries and also take measures to reduce the total dissolved solids in the treated effluent before disposal. The groundwater quality of this region can also be improved by adopting rainwater harvesting thereby increasing groundwater recharge. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • K. Brindha & L. Elango, 2012. "Impact of Tanning Industries on Groundwater Quality near a Metropolitan City in India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1747-1761, April.
  • Handle: RePEc:spr:waterr:v:26:y:2012:i:6:p:1747-1761
    DOI: 10.1007/s11269-012-9985-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-012-9985-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-012-9985-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohamed Dawoud & Abdel Raouf, 2009. "Groundwater Exploration and Assessment in Rural Communities of Yobe State, Northern Nigeria," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 581-601, February.
    2. Madan Jha & Alivia Chowdhury & V. Chowdary & Stefan Peiffer, 2007. "Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(2), pages 427-467, February.
    3. R. Rejani & Madan Jha & Sudhindra Panda, 2009. "Simulation-Optimization Modelling for Sustainable Groundwater Management in a Coastal Basin of Orissa, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(2), pages 235-263, January.
    4. Deepesh Machiwal & Madan Jha & Bimal Mal, 2011. "Assessment of Groundwater Potential in a Semi-Arid Region of India Using Remote Sensing, GIS and MCDM Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1359-1386, March.
    5. H. Assaf & M. Saadeh, 2009. "Geostatistical Assessment of Groundwater Nitrate Contamination with Reflection on DRASTIC Vulnerability Assessment: The Case of the Upper Litani Basin, Lebanon," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 775-796, March.
    6. Jose Expósito & Maria Esteller & Jorge Paredes & Celso Rico & Roberto Franco, 2010. "Groundwater Protection Using Vulnerability Maps and Wellhead Protection Area (WHPA): A Case Study in Mexico," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4219-4236, December.
    7. Madan Jha & K. Chikamori & Y. Kamii & Y. Yamasaki, 1999. "Field Investigations for Sustainable Groundwater Utilization in the Konan Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 13(6), pages 443-470, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biraj Kanti Mondal & Satiprasad Sahoo, 2022. "Evaluation of spatiotemporal dynamics of water storage changes at block level for sustainable water management in Howrah District of West Bengal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9519-9568, July.
    2. G. Gnanachandrasamy & C. Dushiyanthan & T. Jeyavel Rajakumar & Yongzhang Zhou, 2020. "Assessment of hydrogeochemical characteristics of groundwater in the lower Vellar river basin: using Geographical Information System (GIS) and Water Quality Index (WQI)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 759-789, February.
    3. S. Chung & S. Venkatramanan & T. Kim & D. Kim & T. Ramkumar, 2015. "Influence of hydrogeochemical processes and assessment of suitability for groundwater uses in Busan City, Korea," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(3), pages 423-441, June.
    4. Bouderbala Abdelkader, 2019. "Human impact of septic tank effluent on groundwater quality in the rural area of Ain Soltane (Ain Defla), Algieria," Environmental & Socio-economic Studies, Sciendo, vol. 7(2), pages 1-9, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jha, Madan K. & Chowdary, V.M. & Kulkarni, Y. & Mal, B.C., 2014. "Rainwater harvesting planning using geospatial techniques and multicriteria decision analysis," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 96-111.
    2. Prabir Mukherjee & Chander Singh & Saumitra Mukherjee, 2012. "Delineation of Groundwater Potential Zones in Arid Region of India—A Remote Sensing and GIS Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2643-2672, July.
    3. Biswajit Das & Subodh Chandra Pal, 2020. "Assessment of groundwater recharge and its potential zone identification in groundwater-stressed Goghat-I block of Hugli District, West Bengal, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5905-5923, August.
    4. Mahenthiran Sathiyamoorthy & Uma Shankar Masilamani & Aaron Anil Chadee & Sreelakhmi Devi Golla & Mohammed Aldagheiri & Parveen Sihag & Upaka Rathnayake & Jyotendra Patidar & Shivansh Shukla & Aryan K, 2023. "Sustainability of Groundwater Potential Zones in Coastal Areas of Cuddalore District, Tamil Nadu, South India Using Integrated Approach of Remote Sensing, GIS and AHP Techniques," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    5. Tarun Kumar & Amar Gautam & Tinu Kumar, 2014. "Appraising the accuracy of GIS-based Multi-criteria decision making technique for delineation of Groundwater potential zones," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4449-4466, October.
    6. Atul Kumar & Malay Pramanik & Shairy Chaudhary & Mahabir Singh Negi & Sylvia Szabo, 2023. "Geospatial multi-criteria evaluation to identify groundwater potential in a Himalayan District, Rudraprayag, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1519-1560, February.
    7. Nitin L. Rane & Geetha K. Jayaraj, 2022. "Comparison of multi-influence factor, weight of evidence and frequency ratio techniques to evaluate groundwater potential zones of basaltic aquifer systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2315-2344, February.
    8. Hesham Morgan & Hussien M. Hussien & Ahmed Madani & Tamer Nassar, 2022. "Delineating Groundwater Potential Zones in Hyper-Arid Regions Using the Applications of Remote Sensing and GIS Modeling in the Eastern Desert, Egypt," Sustainability, MDPI, vol. 14(24), pages 1-30, December.
    9. Soumik Bhattacharya & Swarupa Das & Sandipan Das & Mahesh Kalashetty & Sumedh R. Warghat, 2021. "An integrated approach for mapping groundwater potential applying geospatial and MIF techniques in the semiarid region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 495-510, January.
    10. Mónica de Castro-Pardo & Pascual Fernández Martínez & Amelia Pérez Zabaleta & João C. Azevedo, 2021. "Dealing with Water Conflicts: A Comprehensive Review of MCDM Approaches to Manage Freshwater Ecosystem Services," Land, MDPI, vol. 10(5), pages 1-32, April.
    11. Rubio-Aliaga, Alvaro & García-Cascales, M. Socorro & Sánchez-Lozano, Juan Miguel & Molina-Garcia, Angel, 2021. "MCDM-based multidimensional approach for selection of optimal groundwater pumping systems: Design and case example," Renewable Energy, Elsevier, vol. 163(C), pages 213-224.
    12. P. Sikandar & E. Christen, 2012. "Geoelectrical Sounding for the Estimation of Hydraulic Conductivity of Alluvial Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1201-1215, March.
    13. Arash Malekian & Ali Azarnivand, 2016. "Application of Integrated Shannon’s Entropy and VIKOR Techniques in Prioritization of Flood Risk in the Shemshak Watershed, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 409-425, January.
    14. Khamis Naba Sayl & Nur Shazwani Muhammad & Zaher Mundher Yaseen & Ahmed El-shafie, 2016. "Estimation the Physical Variables of Rainwater Harvesting System Using Integrated GIS-Based Remote Sensing Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3299-3313, July.
    15. Pennan Chinnasamy & Govindasamy Agoramoorthy, 2015. "Groundwater Storage and Depletion Trends in Tamil Nadu State, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2139-2152, May.
    16. Neslihan Beden & Nazire Göksu Soydan-Oksal & Sema Arıman & Hayatullah Ahmadzai, 2023. "Delineation of a Groundwater Potential Zone Map for the Kızılırmak Delta by Using Remote-Sensing-Based Geospatial and Analytical Hierarchy Processes," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    17. Nagarajan Shanmugavel & Rema Rajendran, 2022. "Adoption of Rainwater Harvesting: a Dual-factor Approach by Integrating Theory of Planned Behaviour and Norm Activation Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2827-2845, June.
    18. Ching-Ping Liang & Cheng-Shin Jang & Cheng-Wei Liang & Jui-Sheng Chen, 2016. "Groundwater Vulnerability Assessment of the Pingtung Plain in Southern Taiwan," IJERPH, MDPI, vol. 13(11), pages 1-19, November.
    19. A. Alvarado & M. Esteller & E. Quentin & J. Expósito, 2016. "Multi-Criteria Decision Analysis and GIS Approach for Prioritization of Drinking Water Utilities Protection Based on their Vulnerability to Contamination," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1549-1566, March.
    20. Shaghayegh Miraki & Sasan Hedayati Zanganeh & Kamran Chapi & Vijay P. Singh & Ataollah Shirzadi & Himan Shahabi & Binh Thai Pham, 2019. "Mapping Groundwater Potential Using a Novel Hybrid Intelligence Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 281-302, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:26:y:2012:i:6:p:1747-1761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.