IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v25y2011i1p41-57.html
   My bibliography  Save this article

Wavelet Transform Method for Synthetic Generation of Daily Streamflow

Author

Listed:
  • Wensheng Wang
  • Shixiong Hu
  • Yueqing Li

Abstract

Synthetic generation of daily streamflow sequences is one of the most critical issues in stochastic hydrology. In this study, a new wavelet transform method is developed for synthetic generation of daily streamflow sequences. Firstly, daily streamflow sequences with different frequency components are decomposed into the series of wavelet coefficients W 1 (t), W 2 (t),...,W P (t) and scale coefficients (the residual) C P (t) at a resolution level P using wavelet decomposition algorithm. Secondly, the series of W 1 (t), W 2 (t),...,W P (t) and C P (t) are divided into a number of sub-series based on a yearly period. Thirdly, random sampling is performed from sub-series of W 1 (t), W 2 (t),...,W P (t) and C P (t), respectively. Based on these sampled sub-series, a large number of synthetic daily streamflow sequences are obtained using wavelet reconstruction algorithm. The advantages of this newly developed method include: (1) it is a nonparametric approach; (2) it is able to avoid assumptions of probability distribution types (Normal or Pearson Type III) and of dependence structure (linear or nonlinear); (3) it is not sensitive to the original data length and suitable for any hydrological sequences; and (4) the generated sequences from this method could capture the dependence structure and statistical properties presented in the data. Finally, a case study in Jinsha River, China, indicates that the new method is valid and efficient in generating daily streamflow sequences based on historical data. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • Wensheng Wang & Shixiong Hu & Yueqing Li, 2011. "Wavelet Transform Method for Synthetic Generation of Daily Streamflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(1), pages 41-57, January.
  • Handle: RePEc:spr:waterr:v:25:y:2011:i:1:p:41-57
    DOI: 10.1007/s11269-010-9686-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-010-9686-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-010-9686-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wensheng Wang & Juliang Jin & Yueqing Li, 2009. "Prediction of Inflow at Three Gorges Dam in Yangtze River with Wavelet Network Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2791-2803, October.
    2. Mehmetcik Bayazit & Hafzullah Aksoy, 2001. "Using wavelets for data generation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(2), pages 157-166.
    3. Hafzullah Aksoy, 2001. "Storage Capacity for River Reservoirs by Wavelet-Based Generation of Sequent-Peak Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 15(6), pages 423-437, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang Wu & Jianzhong Zhou & Lu Chen & Lei Ye, 2015. "Coupling Forecast Methods of Multiple Rainfall–Runoff Models for Improving the Precision of Hydrological Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5091-5108, November.
    2. Yan-Fang Sang, 2012. "A Practical Guide to Discrete Wavelet Decomposition of Hydrologic Time Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3345-3365, September.
    3. Mohamed Shenify & Amir Seyed Danesh & Milan Gocić & Ros Surya Taher & Ainuddin Wahid Abdul Wahab & Abdullah Gani & Shahaboddin Shamshirband & Dalibor Petković, 2016. "Precipitation Estimation Using Support Vector Machine with Discrete Wavelet Transform," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 641-652, January.
    4. Marco Gallegati, 2022. "Multiscale evaluation of CMIP5 models using wavelet-based descriptive and diagnostic techniques," Climatic Change, Springer, vol. 170(3), pages 1-16, February.
    5. Đurica Marković & Jasna Plavšić & Nesa Ilich & Siniša Ilić, 2015. "Non-parametric Stochastic Generation of Streamflow Series at Multiple Locations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4787-4801, October.
    6. Yan-Fang Sang & Zhonggen Wang & Changming Liu, 2015. "Wavelet Neural Modeling for Hydrologic Time Series Forecasting with Uncertainty Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1789-1801, April.
    7. Jenq-Tzong Shiau & Chian-You Huang, 2014. "Detecting Multi-Purpose Reservoir Operation Induced Time-Frequency Alteration Using Wavelet Transform," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3577-3590, September.
    8. R. Venkata Ramana & B. Krishna & S. Kumar & N. Pandey, 2013. "Monthly Rainfall Prediction Using Wavelet Neural Network Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3697-3711, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sajjad Abdollahi & Jalil Raeisi & Mohammadreza Khalilianpour & Farshad Ahmadi & Ozgur Kisi, 2017. "Daily Mean Streamflow Prediction in Perennial and Non-Perennial Rivers Using Four Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4855-4874, December.
    2. Aksoy, Hafzullah & Fuat Toprak, Z & Aytek, Ali & Erdem Ünal, N, 2004. "Stochastic generation of hourly mean wind speed data," Renewable Energy, Elsevier, vol. 29(14), pages 2111-2131.
    3. Hafzullah Aksoy, 2001. "Storage Capacity for River Reservoirs by Wavelet-Based Generation of Sequent-Peak Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 15(6), pages 423-437, December.
    4. Wensheng Wang & Juliang Jin & Yueqing Li, 2009. "Prediction of Inflow at Three Gorges Dam in Yangtze River with Wavelet Network Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2791-2803, October.
    5. Muhammad Shoaib & Asaad Y. Shamseldin & Sher Khan & Mudasser Muneer Khan & Zahid Mahmood Khan & Tahir Sultan & Bruce W. Melville, 2018. "A Comparative Study of Various Hybrid Wavelet Feedforward Neural Network Models for Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 83-103, January.
    6. Seyed Akrami & Vahid Nourani & S. Hakim, 2014. "Development of Nonlinear Model Based on Wavelet-ANFIS for Rainfall Forecasting at Klang Gates Dam," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2999-3018, August.
    7. Vahid Moosavi & Mehdi Vafakhah & Bagher Shirmohammadi & Negin Behnia, 2013. "A Wavelet-ANFIS Hybrid Model for Groundwater Level Forecasting for Different Prediction Periods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1301-1321, March.
    8. Salvatore Campisi-Pinto & Jan Adamowski & Gideon Oron, 2012. "Forecasting Urban Water Demand Via Wavelet-Denoising and Neural Network Models. Case Study: City of Syracuse, Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3539-3558, September.
    9. Padam Jee Omar & Shishir Gaur & S. B. Dwivedi & P. K. S. Dikshit, 2020. "A Modular Three-Dimensional Scenario-Based Numerical Modelling of Groundwater Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1913-1932, April.
    10. Rajeev Sahay & Ayush Srivastava, 2014. "Predicting Monsoon Floods in Rivers Embedding Wavelet Transform, Genetic Algorithm and Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 301-317, January.
    11. Falamarzi, Yashar & Palizdan, Narges & Huang, Yuk Feng & Lee, Teang Shui, 2014. "Estimating evapotranspiration from temperature and wind speed data using artificial and wavelet neural networks (WNNs)," Agricultural Water Management, Elsevier, vol. 140(C), pages 26-36.
    12. Ozgur Kisi & Jalal Shiri, 2011. "Precipitation Forecasting Using Wavelet-Genetic Programming and Wavelet-Neuro-Fuzzy Conjunction Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3135-3152, October.
    13. Carapellucci, Roberto & Giordano, Lorena, 2013. "A new approach for synthetically generating wind speeds: A comparison with the Markov chains method," Energy, Elsevier, vol. 49(C), pages 298-305.
    14. Carapellucci, Roberto & Giordano, Lorena, 2013. "A methodology for the synthetic generation of hourly wind speed time series based on some known aggregate input data," Applied Energy, Elsevier, vol. 101(C), pages 541-550.
    15. J. Drisya & D. Sathish Kumar & Thendiyath Roshni, 2021. "Hydrological drought assessment through streamflow forecasting using wavelet enabled artificial neural networks," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3653-3672, March.
    16. Ozgur Kisi, 2011. "Wavelet Regression Model as an Alternative to Neural Networks for River Stage Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 579-600, January.
    17. Huaizhi Su & Xiaoqun Yan & Hongping Liu & Zhiping Wen, 2017. "Integrated Multi-Level Control Value and Variation Trend Early-Warning Approach for Deformation Safety of Arch Dam," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 2025-2045, April.
    18. Murat Kucuk & Necati Ağirali-super-˙oğlu, 2006. "Wavelet Regression Technique for Streamflow Prediction," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(9), pages 943-960.
    19. Babak Vaheddoost & Hafzullah Aksoy, 2019. "Reconstruction of Hydrometeorological Data in Lake Urmia Basin by Frequency Domain Analysis Using Additive Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3899-3911, September.
    20. R. Venkata Ramana & B. Krishna & S. Kumar & N. Pandey, 2013. "Monthly Rainfall Prediction Using Wavelet Neural Network Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3697-3711, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:25:y:2011:i:1:p:41-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.