IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i6d10.1007_s11269-017-1631-8.html
   My bibliography  Save this article

Integrated Multi-Level Control Value and Variation Trend Early-Warning Approach for Deformation Safety of Arch Dam

Author

Listed:
  • Huaizhi Su

    (Hohai University
    Hohai University)

  • Xiaoqun Yan

    (Hohai University)

  • Hongping Liu

    (Hohai University)

  • Zhiping Wen

    (Nanjing Institute of Technology)

Abstract

Appropriate early-warning index of dam deformation can be used to identify the structural behavior in real time. It is an important measures to monitor the service safety of dam engineering. This paper focuses on the approach determining the early-warning index of arch dam deformation by analyzing the prototypical observations of dam safety and implementing the numerical simulation of dam structure. First, according to the long-term deformation process of arch dam, an early-warning criterion, which combines the multi-level control value and variation trend of dam deformation, is presented. Second, the numerical analysis for structural failure is implemented to calculate the global safety factor of arch dam. A method determining the global safety factor-based control value of dam deformation is developed. Third, the multi-resolution analysis of wavelet is introduced to identify the variation trend of dam deformation from the measured data. The variation trend rule is given to judge the deformation status of arch dam. Finally, the deformation behavior of one actual arch dam is taken as an example. The multi-level control value formula of dam deformation is given. It is combined with the variation trend of dam deformation to fulfill the comprehensive evaluation of deformation safety. It is indicated that the proposed approach is suitable to be used to determine the early-warning index of arch dam deformation, can help with identifying the service safety and potential risk of dam engineering.

Suggested Citation

  • Huaizhi Su & Xiaoqun Yan & Hongping Liu & Zhiping Wen, 2017. "Integrated Multi-Level Control Value and Variation Trend Early-Warning Approach for Deformation Safety of Arch Dam," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 2025-2045, April.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:6:d:10.1007_s11269-017-1631-8
    DOI: 10.1007/s11269-017-1631-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1631-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1631-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kasim Yenigun & Cevat Erkek, 2007. "Reliability in dams and the effects of spillway dimensions on risk levels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(4), pages 747-760, April.
    2. Wensheng Wang & Juliang Jin & Yueqing Li, 2009. "Prediction of Inflow at Three Gorges Dam in Yangtze River with Wavelet Network Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2791-2803, October.
    3. Denghua Zhong & Yuefeng Sun & Mingchao Li, 2011. "Dam break threshold value and risk probability assessment for an earth dam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 129-147, October.
    4. Huaizhi Su & Zhiping Wen & Zhongru Wu, 2011. "Study on an Intelligent Inference Engine in Early-Warning System of Dam Health," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1545-1563, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Yang & Yan Xiang & Guangze Shen & Meng Sun, 2022. "A Combination Model for Displacement Interval Prediction of Concrete Dams Based on Residual Estimation," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
    2. Liansheng Sang & Jun Wang & Jueyi Sui & Mauricio Dziedzic, 2022. "A New Approach for Dam Safety Assessment Using the Extended Cloud Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 5785-5798, December.
    3. Chenfei Shao & Yanxin Xu & Huixiang Chen & Sen Zheng & Xiangnan Qin, 2023. "Ordinary Kriging Interpolation Method Combined with FEM for Arch Dam Deformation Field Estimation," Mathematics, MDPI, vol. 11(5), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huaizhi Su & Meng Yang & Yeyuan Kang, 2016. "Comprehensive Evaluation Model of Debris Flow Risk in Hydropower Projects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1151-1163, February.
    2. Muhammad Shoaib & Asaad Y. Shamseldin & Sher Khan & Mudasser Muneer Khan & Zahid Mahmood Khan & Tahir Sultan & Bruce W. Melville, 2018. "A Comparative Study of Various Hybrid Wavelet Feedforward Neural Network Models for Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 83-103, January.
    3. Seyed Akrami & Vahid Nourani & S. Hakim, 2014. "Development of Nonlinear Model Based on Wavelet-ANFIS for Rainfall Forecasting at Klang Gates Dam," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2999-3018, August.
    4. Sajjad Abdollahi & Jalil Raeisi & Mohammadreza Khalilianpour & Farshad Ahmadi & Ozgur Kisi, 2017. "Daily Mean Streamflow Prediction in Perennial and Non-Perennial Rivers Using Four Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4855-4874, December.
    5. Chong-Xun Mo & Gui-Yan Mo & Liu Peng & Qing Yang & Xin-Rong Zhu & Qing-Ling Jiang & Ju-Liang Jin, 2019. "Quantitative Vulnerability Model of Earth Dam Overtopping and its Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1801-1815, March.
    6. Khalil Ardeshirtanha & Ahmad Sharafati, 2020. "Assessment of Water Supply Dam Failure Risk: Development of New Stochastic Failure Modes and Effects Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(5), pages 1827-1841, March.
    7. Huai Su & Jiang Hu & Zhi Wen, 2013. "Optimization of reinforcement strategies for dangerous dams considering time-average system failure probability and benefit–cost ratio using a life quality index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 799-817, January.
    8. Huaizhi Su & Peng Qin & Zhihai Qin, 2013. "A Method for Evaluating Sea Dike Safety," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5157-5170, December.
    9. Salvatore Campisi-Pinto & Jan Adamowski & Gideon Oron, 2012. "Forecasting Urban Water Demand Via Wavelet-Denoising and Neural Network Models. Case Study: City of Syracuse, Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3539-3558, September.
    10. A. Sharafati & H. M. Azamathulla, 2018. "Assessment of Dam Overtopping Reliability using SUFI Based Overtopping Threshold Curve," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2369-2383, May.
    11. Padam Jee Omar & Shishir Gaur & S. B. Dwivedi & P. K. S. Dikshit, 2020. "A Modular Three-Dimensional Scenario-Based Numerical Modelling of Groundwater Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1913-1932, April.
    12. Rajeev Sahay & Ayush Srivastava, 2014. "Predicting Monsoon Floods in Rivers Embedding Wavelet Transform, Genetic Algorithm and Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 301-317, January.
    13. Te Wang & Zongkun Li & Wei Ge & Yadong Zhang & Yutie Jiao & Hua Zhang & Heqiang Sun & Pieter Gelder, 2023. "Risk assessment methods of cascade reservoir dams: a review and reflection," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1601-1622, January.
    14. Falamarzi, Yashar & Palizdan, Narges & Huang, Yuk Feng & Lee, Teang Shui, 2014. "Estimating evapotranspiration from temperature and wind speed data using artificial and wavelet neural networks (WNNs)," Agricultural Water Management, Elsevier, vol. 140(C), pages 26-36.
    15. Ozgur Kisi & Jalal Shiri, 2011. "Precipitation Forecasting Using Wavelet-Genetic Programming and Wavelet-Neuro-Fuzzy Conjunction Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3135-3152, October.
    16. Wensheng Wang & Shixiong Hu & Yueqing Li, 2011. "Wavelet Transform Method for Synthetic Generation of Daily Streamflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(1), pages 41-57, January.
    17. Huaizhi Su & Jiang Hu & Men Yang & Zhiping Wen, 2015. "Assessment and prediction for service life of water resources and hydropower engineering," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 3005-3019, February.
    18. Kawa Z. Abdulrahman & Mariwan R. Faris & Hekmat M. Ibrahim & Omed S. Q. Yousif & Alan Abubaker Ghafoor & Luqman S. Othman & Moses Karakouzian, 2022. "Hypothetical failure of the Khassa Chai dam and flood risk analysis for Kirkuk, Iraq," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1833-1851, September.
    19. J. Drisya & D. Sathish Kumar & Thendiyath Roshni, 2021. "Hydrological drought assessment through streamflow forecasting using wavelet enabled artificial neural networks," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3653-3672, March.
    20. Ozgur Kisi, 2011. "Wavelet Regression Model as an Alternative to Neural Networks for River Stage Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 579-600, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:6:d:10.1007_s11269-017-1631-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.