IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v26y2012i12p3539-3558.html
   My bibliography  Save this article

Forecasting Urban Water Demand Via Wavelet-Denoising and Neural Network Models. Case Study: City of Syracuse, Italy

Author

Listed:
  • Salvatore Campisi-Pinto
  • Jan Adamowski
  • Gideon Oron

Abstract

Forecasting urban water demand can be of use in the management of water utilities. For example, activities such as water-budgeting, operation and maintenance of pumps, wells, reservoirs, and mains require quantitative estimations of water resources at specified future dates. In this study, we tackle the problem of forecasting urban water demand by means of back-propagation artificial neural networks (ANNs) coupled with wavelet-denoising. In addition, non-coupled ANN and Linear Multiple Regression were used as comparison models. We considered the case of the municipality of Syracuse, Italy; for this purpose, we used a 7 year-long time series of water demand without additional predictors. Six forecasting horizons were considered, from 1 to 6 months ahead. The main objective was to implement a forecasting model that may be readily used for municipal water budgeting. An additional objective was to explore the impact of wavelet-denoising on ANN generalization. For this purpose, we measured the impact of five different wavelet filter-banks (namely, Haar and Daubechies of type db2, db3, db4, and db5) on a single neural network. Empirical results show that neural networks coupled with Haar and Daubechies’ filter-banks of type db2 and db3 outperformed all of the following: non-coupled ANN, Multiple Linear Regression and ANN models coupled with Daubechies filters of type db4 and db5. The results of this study suggest that reduced variance in the training-set (by means of denoising) may improve forecasting accuracy; on the other hand, an oversimplification of the input-matrix may deteriorate forecasting accuracy and induce network instability. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Salvatore Campisi-Pinto & Jan Adamowski & Gideon Oron, 2012. "Forecasting Urban Water Demand Via Wavelet-Denoising and Neural Network Models. Case Study: City of Syracuse, Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3539-3558, September.
  • Handle: RePEc:spr:waterr:v:26:y:2012:i:12:p:3539-3558
    DOI: 10.1007/s11269-012-0089-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-012-0089-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-012-0089-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wensheng Wang & Juliang Jin & Yueqing Li, 2009. "Prediction of Inflow at Three Gorges Dam in Yangtze River with Wavelet Network Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2791-2803, October.
    2. Veysel Güldal & Hakan Tongal, 2010. "Comparison of Recurrent Neural Network, Adaptive Neuro-Fuzzy Inference System and Stochastic Models in Eğirdir Lake Level Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 105-128, January.
    3. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    4. Oron, Gideon & Campos, Claudia & Gillerman, Leonid & Salgot, Miquel, 1999. "Wastewater treatment, renovation and reuse for agricultural irrigation in small communities," Agricultural Water Management, Elsevier, vol. 38(3), pages 223-234, January.
    5. Paresh Shirsath & Anil Singh, 2010. "A Comparative Study of Daily Pan Evaporation Estimation Using ANN, Regression and Climate Based Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1571-1581, June.
    6. Chien-ming Chou, 2011. "A Threshold Based Wavelet Denoising Method for Hydrological Data Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(7), pages 1809-1830, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao-Chen Yuan & Yi-Ming Wei & Su-Yan Pan & Ju-Liang Jin, 2014. "Urban Household Water Demand in Beijing by 2020: An Agent-Based Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2967-2980, August.
    2. Vahid Moosavi & Mehdi Vafakhah & Bagher Shirmohammadi & Negin Behnia, 2013. "A Wavelet-ANFIS Hybrid Model for Groundwater Level Forecasting for Different Prediction Periods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1301-1321, March.
    3. Wen-Ze Wu & Chong Liu & Wanli Xie & Mark Goh & Tao Zhang, 2023. "Predictive analysis of the industrial water-waste-energy system using an optimised grey approach: A case study in China," Energy & Environment, , vol. 34(5), pages 1639-1656, August.
    4. Yanhu He & Jie Yang & Xiaohong Chen & Kairong Lin & Yanhui Zheng & Zhaoli Wang, 2018. "A Two-stage Approach to Basin-scale Water Demand Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 401-416, January.
    5. Qinghua Zhang & Yanfang Diao & Jie Dong, 2013. "Regional Water Demand Prediction and Analysis Based on Cobb-Douglas Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3103-3113, June.
    6. Iman Fatehi & Bahman Amiri & Afshin Alizadeh & Jan Adamowski, 2015. "Modeling the Relationship between Catchment Attributes and In-stream Water Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5055-5072, November.
    7. Izabela Rojek, 2014. "Models for Better Environmental Intelligent Management within Water Supply Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 3875-3890, September.
    8. Animesh Debnath & Mrinmoy Majumder & Manish Pal, 2015. "A Cognitive Approach in Selection of Source for Water Treatment Plant based on Climatic Impact," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1907-1919, April.
    9. Mukand Babel & Nisuchcha Maporn & Victor Shinde, 2014. "Incorporating Future Climatic and Socioeconomic Variables in Water Demand Forecasting: A Case Study in Bangkok," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 2049-2062, May.
    10. Bahaa Khalil & Taha Ouarda & André St-Hilaire, 2012. "Comparison of Record-Extension Techniques for Water Quality Variables," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4259-4280, November.
    11. Haidong Huang & Zhixiong Zhang & Fengxuan Song, 2021. "An Ensemble-Learning-Based Method for Short-Term Water Demand Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1757-1773, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sajjad Abdollahi & Jalil Raeisi & Mohammadreza Khalilianpour & Farshad Ahmadi & Ozgur Kisi, 2017. "Daily Mean Streamflow Prediction in Perennial and Non-Perennial Rivers Using Four Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4855-4874, December.
    2. Andres Ticlavilca & Mac McKee, 2011. "Multivariate Bayesian Regression Approach to Forecast Releases from a System of Multiple Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 523-543, January.
    3. Xuesong Zhang & Kaiguang Zhao, 2012. "Bayesian Neural Networks for Uncertainty Analysis of Hydrologic Modeling: A Comparison of Two Schemes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2365-2382, June.
    4. R. Venkata Ramana & B. Krishna & S. Kumar & N. Pandey, 2013. "Monthly Rainfall Prediction Using Wavelet Neural Network Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3697-3711, August.
    5. Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
    6. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    7. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    8. Nataša Glišović & Miloš Milenković & Nebojša Bojović & Libor Švadlenka & Zoran Avramović, 2016. "A hybrid model for forecasting the volume of passenger flows on Serbian railways," Operational Research, Springer, vol. 16(2), pages 271-285, July.
    9. Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
    10. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    11. Sangseop Lim & Chang-hee Lee & Won-Ju Lee & Junghwan Choi & Dongho Jung & Younghun Jeon, 2022. "Valuation of the Extension Option in Time Charter Contracts in the LNG Market," Energies, MDPI, vol. 15(18), pages 1-14, September.
    12. Bontempi, Gianluca & Ben Taieb, Souhaib, 2011. "Conditionally dependent strategies for multiple-step-ahead prediction in local learning," International Journal of Forecasting, Elsevier, vol. 27(3), pages 689-699, July.
    13. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    14. Carlo Fezzi & Luca Mosetti, 2018. "Size matters: Estimation sample length and electricity price forecasting accuracy," DEM Working Papers 2018/10, Department of Economics and Management.
    15. Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
    16. Roman Matkovskyy & Taoufik Bouraoui, 2019. "Application of Neural Networks to Short Time Series Composite Indexes: Evidence from the Nonlinear Autoregressive with Exogenous Inputs (NARX) Model," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(2), pages 433-446, June.
    17. Ye, Yuan & Lu, Yonggang & Robinson, Powell & Narayanan, Arunachalam, 2022. "An empirical Bayes approach to incorporating demand intermittency and irregularity into inventory control," European Journal of Operational Research, Elsevier, vol. 303(1), pages 255-272.
    18. CIOBANU Dumitru & BAR Mary Violeta, 2013. "On The Prediction Of Exchange Rate Dollar/Euro With An Svm Model," Revista Economica, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 65(2), pages 91-109.
    19. Chenghao Zhong & Wengao Lou & Yongzeng Lai, 2023. "A Projection Pursuit Dynamic Cluster Model for Tourism Safety Early Warning and Its Implications for Sustainable Tourism," Mathematics, MDPI, vol. 11(24), pages 1-17, December.
    20. Safar Marofi & Hossein Tabari & Hamid Abyaneh, 2011. "Predicting Spatial Distribution of Snow Water Equivalent Using Multivariate Non-linear Regression and Computational Intelligence Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1417-1435, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:26:y:2012:i:12:p:3539-3558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.