IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v11y2002i2p317-344.html
   My bibliography  Save this article

Functional nonparametric model for time series: a fractal approach for dimension reduction

Author

Listed:
  • Frédéric Ferraty
  • Aldo Goia
  • Philippe Vieu

Abstract

No abstract is available for this item.

Suggested Citation

  • Frédéric Ferraty & Aldo Goia & Philippe Vieu, 2002. "Functional nonparametric model for time series: a fractal approach for dimension reduction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 11(2), pages 317-344, December.
  • Handle: RePEc:spr:testjl:v:11:y:2002:i:2:p:317-344
    DOI: 10.1007/BF02595710
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02595710
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02595710?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dauxois, J. & Pousse, A. & Romain, Y., 1982. "Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference," Journal of Multivariate Analysis, Elsevier, vol. 12(1), pages 136-154, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antoniadis, Anestis & Paparoditis, Efstathios & Sapatinas, Theofanis, 2009. "Bandwidth selection for functional time series prediction," Statistics & Probability Letters, Elsevier, vol. 79(6), pages 733-740, March.
    2. Dabo-Niang, S. & Guillas, S. & Ternynck, C., 2016. "Efficiency in multivariate functional nonparametric models with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 168-182.
    3. Berkes, István & Horváth, Lajos & Rice, Gregory, 2016. "On the asymptotic normality of kernel estimators of the long run covariance of functional time series," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 150-175.
    4. M. D. Ruiz-Medina & D. Miranda & R. M. Espejo, 2019. "Dynamical multiple regression in function spaces, under kernel regressors, with ARH(1) errors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 943-968, September.
    5. Ruiz-Medina, María D. & Álvarez-Liébana, Javier, 2019. "Strongly consistent autoregressive predictors in abstract Banach spaces," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 186-201.
    6. Idir Ouassou & Mustapha Rachdi, 2012. "Regression operator estimation by delta-sequences method for functional data and its applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(4), pages 451-465, October.
    7. Yousri Slaoui, 2020. "Recursive nonparametric regression estimation for dependent strong mixing functional data," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 665-697, October.
    8. Ling, Nengxiang & Xu, Qian, 2012. "Asymptotic normality of conditional density estimation in the single index model for functional time series data," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2235-2243.
    9. Delsol, Laurent & Ferraty, Frédéric & Vieu, Philippe, 2011. "Structural test in regression on functional variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 422-447, March.
    10. Shang, Han Lin, 2016. "A Bayesian approach for determining the optimal semi-metric and bandwidth in scalar-on-function quantile regression with unknown error density and dependent functional data," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 95-104.
    11. Mohamed Chaouch & Salah Khardani, 2015. "Randomly censored quantile regression estimation using functional stationary ergodic data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(1), pages 65-87, March.
    12. Kadiri Nadia & Rabhi Abbes & Bouchentouf Amina Angelika, 2018. "Strong uniform consistency rates of conditional quantile estimation in the single functional index model under random censorship," Dependence Modeling, De Gruyter, vol. 6(1), pages 197-227, November.
    13. Allam, Abdelaziz & Mourid, Tahar, 2014. "Covariance operator estimation of a functional autoregressive process with random coefficients," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 1-8.
    14. Larbi Ait-Hennani & Zoulikha Kaid & Ali Laksaci & Mustapha Rachdi, 2022. "Nonparametric Estimation of the Expected Shortfall Regression for Quasi-Associated Functional Data," Mathematics, MDPI, vol. 10(23), pages 1-23, November.
    15. Ruiz-Medina, M.D. & Álvarez-Liébana, J., 2019. "A note on strong-consistency of componentwise ARH(1) predictors," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 224-228.
    16. Aneiros-Pérez, Germán & Vieu, Philippe, 2008. "Nonparametric time series prediction: A semi-functional partial linear modeling," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 834-857, May.
    17. Shang, Han Lin, 2017. "Functional time series forecasting with dynamic updating: An application to intraday particulate matter concentration," Econometrics and Statistics, Elsevier, vol. 1(C), pages 184-200.
    18. Said Attaoui & Nengxiang Ling, 2016. "Asymptotic results of a nonparametric conditional cumulative distribution estimator in the single functional index modeling for time series data with applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(5), pages 485-511, July.
    19. Cerovecki, Clément & Hörmann, Siegfried, 2017. "On the CLT for discrete Fourier transforms of functional time series," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 282-295.
    20. Goia, Aldo, 2012. "A functional linear model for time series prediction with exogenous variables," Statistics & Probability Letters, Elsevier, vol. 82(5), pages 1005-1011.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:cte:wsrepe:ws1506 is not listed on IDEAS
    2. María Edo & Walter Sosa Escudero & Marcela Svarc, 2021. "A multidimensional approach to measuring the middle class," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 19(1), pages 139-162, March.
    3. Jarry, Gabriel & Delahaye, Daniel & Nicol, Florence & Feron, Eric, 2020. "Aircraft atypical approach detection using functional principal component analysis," Journal of Air Transport Management, Elsevier, vol. 84(C).
    4. Guangxing Wang & Sisheng Liu & Fang Han & Chong‐Zhi Di, 2023. "Robust functional principal component analysis via a functional pairwise spatial sign operator," Biometrics, The International Biometric Society, vol. 79(2), pages 1239-1253, June.
    5. repec:hum:wpaper:sfb649dp2006-010 is not listed on IDEAS
    6. van Delft, Anne, 2020. "A note on quadratic forms of stationary functional time series under mild conditions," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4206-4251.
    7. Bali, Juan Lucas & Boente, Graciela, 2015. "Influence function of projection-pursuit principal components for functional data," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 173-199.
    8. Qi, Xin & Zhao, Hongyu, 2011. "Some theoretical properties of Silverman's method for Smoothed functional principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 741-767, April.
    9. Ci-Ren Jiang & John A. D. Aston & Jane-Ling Wang, 2016. "A Functional Approach to Deconvolve Dynamic Neuroimaging Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 1-13, March.
    10. Delsol, Laurent & Ferraty, Frédéric & Vieu, Philippe, 2011. "Structural test in regression on functional variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 422-447, March.
    11. repec:hum:wpaper:sfb649dp2005-016 is not listed on IDEAS
    12. Rademacher, Daniel & Kreiß, Jens-Peter & Paparoditis, Efstathios, 2024. "Asymptotic normality of spectral means of Hilbert space valued random processes," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
    13. Beran, Jan & Liu, Haiyan, 2016. "Estimation of eigenvalues, eigenvectors and scores in FDA models with dependent errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 218-233.
    14. Chung Chang & Yakuan Chen & R. Ogden, 2014. "Functional data classification: a wavelet approach," Computational Statistics, Springer, vol. 29(6), pages 1497-1513, December.
    15. Yuping Hu & Siyu Wu & Sanying Feng & Junliang Jin, 2020. "Estimation in Partial Functional Linear Spatial Autoregressive Model," Mathematics, MDPI, vol. 8(10), pages 1-12, October.
    16. Biau Gérard & Mas André, 2012. "PCA-kernel estimation," Statistics & Risk Modeling, De Gruyter, vol. 29(1), pages 19-46, March.
    17. Haixu Wang & Jiguo Cao, 2023. "Nonlinear prediction of functional time series," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    18. Andrii Babii & Eric Ghysels & Junsu Pan, 2022. "Tensor Principal Component Analysis," Papers 2212.12981, arXiv.org, revised Aug 2023.
    19. André Mas, 2002. "Testing for the Mean of Random Curves : from Penalization to Dimension Selection," Working Papers 2002-08, Center for Research in Economics and Statistics.
    20. Berkes, István & Horváth, Lajos & Rice, Gregory, 2016. "On the asymptotic normality of kernel estimators of the long run covariance of functional time series," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 150-175.
    21. Nie, Yunlong & Cao, Jiguo, 2020. "Sparse functional principal component analysis in a new regression framework," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    22. Aguilera-Morillo, M. Carmen & Aguilera, Ana M. & Jiménez-Molinos, Francisco & Roldán, Juan B., 2019. "Stochastic modeling of Random Access Memories reset transitions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 197-209.
    23. Kraus, David, 2019. "Inferential procedures for partially observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 583-603.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:11:y:2002:i:2:p:317-344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.