IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v6y2018i1p197-227n13.html
   My bibliography  Save this article

Strong uniform consistency rates of conditional quantile estimation in the single functional index model under random censorship

Author

Listed:
  • Kadiri Nadia

    (Statistics Laboratory Stochastic Processes University Djillali LIABES of Sidi Bel Abbes,Sidi Bel Abbes, Algeria)

  • Rabhi Abbes

    (Laboratory of Mathematics, University Djillali LIABES of Sidi Bel Abbes,Sidi Bel Abbes, Algeria)

  • Bouchentouf Amina Angelika

    (Laboratory of Mathematics, University Djillali LIABES of Sidi Bel Abbes,Sidi Bel Abbes, Algeria)

Abstract

The main objective of this paper is to non-parametrically estimate the quantiles of a conditional distribution in the censorship model when the sample is considered as an -mixing sequence. First of all, a kernel type estimator for the conditional cumulative distribution function (cond-cdf) is introduced. Afterwards, we estimate the quantiles by inverting this estimated cond-cdf and state the asymptotic properties when the observations are linked with a single-index structure. The pointwise almost complete convergence and the uniform almost complete convergence (with rate) of the kernel estimate of this model are established. This approach can be applied in time series analysis.

Suggested Citation

  • Kadiri Nadia & Rabhi Abbes & Bouchentouf Amina Angelika, 2018. "Strong uniform consistency rates of conditional quantile estimation in the single functional index model under random censorship," Dependence Modeling, De Gruyter, vol. 6(1), pages 197-227, November.
  • Handle: RePEc:vrs:demode:v:6:y:2018:i:1:p:197-227:n:13
    DOI: 10.1515/demo-2018-0013
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/demo-2018-0013
    Download Restriction: no

    File URL: https://libkey.io/10.1515/demo-2018-0013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Said Attaoui, 2014. "Strong uniform consistency rates and asymptotic normality of conditional density estimator in the single functional index modeling for time series data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(3), pages 257-286, July.
    2. Frédéric Ferraty & Philippe Vieu, 2002. "The Functional Nonparametric Model and Application to Spectrometric Data," Computational Statistics, Springer, vol. 17(4), pages 545-564, December.
    3. Philippe C. Besse & Herve Cardot & David B. Stephenson, 2000. "Autoregressive Forecasting of Some Functional Climatic Variations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 673-687, December.
    4. Th. Gasser & P. Hall & B. Presnell, 1998. "Nonparametric estimation of the mode of a distribution of random curves," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(4), pages 681-691.
    5. Delecroix, Michel & Härdle, Wolfgang & Hristache, Marian, 2003. "Efficient estimation in conditional single-index regression," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 213-226, August.
    6. Peter Hall, 2002. "Estimating and depicting the structure of a distribution of random functions," Biometrika, Biometrika Trust, vol. 89(1), pages 145-158, March.
    7. Ingrid Van Keilegom & Noël Veraverbeke, 2001. "Hazard Rate Estimation in Nonparametric Regression with Censored Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(4), pages 730-745, December.
    8. Frédéric Ferraty & Aldo Goia & Philippe Vieu, 2002. "Functional nonparametric model for time series: a fractal approach for dimension reduction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 11(2), pages 317-344, December.
    9. Samanta, M., 1989. "Non-parametric estimation of conditional quantiles," Statistics & Probability Letters, Elsevier, vol. 7(5), pages 407-412, April.
    10. Aldo Goia & Philippe Vieu, 2015. "A partitioned Single Functional Index Model," Computational Statistics, Springer, vol. 30(3), pages 673-692, September.
    11. Benhenni, K. & Hedli-Griche, S. & Rachdi, M. & Vieu, P., 2008. "Consistency of the regression estimator with functional data under long memory conditions," Statistics & Probability Letters, Elsevier, vol. 78(8), pages 1043-1049, June.
    12. Cai, Zongwu, 2002. "Regression Quantiles For Time Series," Econometric Theory, Cambridge University Press, vol. 18(1), pages 169-192, February.
    13. Attaoui, Said & Laksaci, Ali & Ould Said, Elias, 2011. "A note on the conditional density estimate in the single functional index model," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 45-53, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Said Attaoui & Nengxiang Ling, 2016. "Asymptotic results of a nonparametric conditional cumulative distribution estimator in the single functional index modeling for time series data with applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(5), pages 485-511, July.
    2. Idir Ouassou & Mustapha Rachdi, 2012. "Regression operator estimation by delta-sequences method for functional data and its applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(4), pages 451-465, October.
    3. Ling, Nengxiang & Xu, Qian, 2012. "Asymptotic normality of conditional density estimation in the single index model for functional time series data," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2235-2243.
    4. Akkal Fatima & Kadiri Nadia & Rabhi Abbes, 2021. "Asymptotic Normality of Conditional Density and Conditional Mode in the Functional Single Index Model," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 25(1), pages 1-24, March.
    5. Yousri Slaoui, 2020. "Recursive nonparametric regression estimation for dependent strong mixing functional data," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 665-697, October.
    6. Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2006. "On the use of the bootstrap for estimating functions with functional data," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1063-1074, November.
    7. Said Attaoui, 2014. "Strong uniform consistency rates and asymptotic normality of conditional density estimator in the single functional index modeling for time series data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(3), pages 257-286, July.
    8. Dabo-Niang, S. & Guillas, S. & Ternynck, C., 2016. "Efficiency in multivariate functional nonparametric models with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 168-182.
    9. Hamri Mohamed Mehdi & Mekki Sanaà Dounya & Rabhi Abbes & Kadiri Nadia, 2022. "Single Functional Index Quantile Regression for Independent Functional Data Under Right-Censoring," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 26(1), pages 31-62, March.
    10. Delsol, Laurent & Ferraty, Frédéric & Vieu, Philippe, 2011. "Structural test in regression on functional variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 422-447, March.
    11. Hsu, Chih-Yuan & Wu, Tiee-Jian, 2013. "Efficient estimation of the mode of continuous multivariate data," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 148-159.
    12. Shang, Han Lin, 2016. "A Bayesian approach for determining the optimal semi-metric and bandwidth in scalar-on-function quantile regression with unknown error density and dependent functional data," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 95-104.
    13. Frédéric Ferraty & Nadia Kudraszow & Philippe Vieu, 2012. "Nonparametric estimation of a surrogate density function in infinite-dimensional spaces," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(2), pages 447-464.
    14. Ferraty, F. & Vieu, P., 2003. "Curves discrimination: a nonparametric functional approach," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 161-173, October.
    15. M. D. Ruiz-Medina & D. Miranda & R. M. Espejo, 2019. "Dynamical multiple regression in function spaces, under kernel regressors, with ARH(1) errors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 943-968, September.
    16. Gannoun, Ali & Girard, Stephane & Guinot, Christiane & Saracco, Jerome, 2004. "Sliced inverse regression in reference curves estimation," Computational Statistics & Data Analysis, Elsevier, vol. 46(1), pages 103-122, May.
    17. Boente, Graciela & Vahnovan, Alejandra, 2017. "Robust estimators in semi-functional partial linear regression models," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 59-84.
    18. Ruiz-Medina, M.D. & Álvarez-Liébana, J., 2019. "A note on strong-consistency of componentwise ARH(1) predictors," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 224-228.
    19. Shang, Han Lin, 2017. "Functional time series forecasting with dynamic updating: An application to intraday particulate matter concentration," Econometrics and Statistics, Elsevier, vol. 1(C), pages 184-200.
    20. Berkes, István & Horváth, Lajos & Rice, Gregory, 2016. "On the asymptotic normality of kernel estimators of the long run covariance of functional time series," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 150-175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:6:y:2018:i:1:p:197-227:n:13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.