IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v154y2017icp282-295.html
   My bibliography  Save this article

On the CLT for discrete Fourier transforms of functional time series

Author

Listed:
  • Cerovecki, Clément
  • Hörmann, Siegfried

Abstract

The purpose of this paper is to derive sharp conditions for the asymptotic normality of a discrete Fourier transform of a functional time series (Xt:t≥1) defined, for all θ∈(−π,π], by Sn(θ)=Xte−iθ+⋯+Xte−inθ. Assuming that the function space is a Hilbert space we prove that a Central Limit Theorem (CLT) holds for almost all frequencies θ if the process (Xt) is stationary, ergodic and purely non-deterministic. Under slightly stronger assumptions we formulate versions which provide a CLT for fixed frequencies as well as for Sn(θn), when θn→θ0 is a sequence of fundamental frequencies. In particular we also deduce the regular CLT (θ=0) under new and very mild assumptions. We show that our results apply to the most commonly studied functional time series.

Suggested Citation

  • Cerovecki, Clément & Hörmann, Siegfried, 2017. "On the CLT for discrete Fourier transforms of functional time series," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 282-295.
  • Handle: RePEc:eee:jmvana:v:154:y:2017:i:c:p:282-295
    DOI: 10.1016/j.jmva.2016.11.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X16301592
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2016.11.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Horváth, Lajos & Kokoszka, Piotr & Rice, Gregory, 2014. "Testing stationarity of functional time series," Journal of Econometrics, Elsevier, vol. 179(1), pages 66-82.
    2. Kokoszka, Piotr & Mikosch, Thomas, 2000. "The periodogram at the Fourier frequencies," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 49-79, March.
    3. Lajos Horváth & Piotr Kokoszka & Ron Reeder, 2013. "Estimation of the mean of functional time series and a two-sample problem," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(1), pages 103-122, January.
    4. Kargin, V. & Onatski, A., 2008. "Curve forecasting by functional autoregression," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2508-2526, November.
    5. Panaretos, Victor M. & Tavakoli, Shahin, 2013. "Cramér–Karhunen–Loève representation and harmonic principal component analysis of functional time series," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2779-2807.
    6. Ruiz-Medina, M.D. & Romano, E. & Fernández-Pascual, R., 2016. "Plug-in prediction intervals for a special class of standard ARH(1) processes," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 138-150.
    7. Siegfried Hörmann & Łukasz Kidziński & Marc Hallin, 2015. "Dynamic functional principal components," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 319-348, March.
    8. Mas, André, 2007. "Weak convergence in the functional autoregressive model," Journal of Multivariate Analysis, Elsevier, vol. 98(6), pages 1231-1261, July.
    9. Devin Didericksen & Piotr Kokoszka & Xi Zhang, 2012. "Empirical properties of forecasts with the functional autoregressive model," Computational Statistics, Springer, vol. 27(2), pages 285-298, June.
    10. Liebl, Dominik, 2013. "Modeling and Forecasting Electricity Spot Prices: A Functional Data Perspective," MPRA Paper 50881, University Library of Munich, Germany.
    11. Julien Damon & Serge Guillas, 2005. "Estimation and Simulation of Autoregressive Hilbertian Processes with Exogenous Variables," Statistical Inference for Stochastic Processes, Springer, vol. 8(2), pages 185-204, September.
    12. Berkes, István & Horváth, Lajos & Rice, Gregory, 2013. "Weak invariance principles for sums of dependent random functions," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 385-403.
    13. Frédéric Ferraty & Aldo Goia & Philippe Vieu, 2002. "Functional nonparametric model for time series: a fractal approach for dimension reduction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 11(2), pages 317-344, December.
    14. Alexander Aue & Diogo Dubart Norinho & Siegfried Hörmann, 2015. "On the Prediction of Stationary Functional Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 378-392, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beare, Brendan K. & Seo, Won-Ki, 2020. "Representation Of I(1) And I(2) Autoregressive Hilbertian Processes," Econometric Theory, Cambridge University Press, vol. 36(5), pages 773-802, October.
    2. Cerovecki, Clément & Francq, Christian & Hörmann, Siegfried & Zakoïan, Jean-Michel, 2019. "Functional GARCH models: The quasi-likelihood approach and its applications," Journal of Econometrics, Elsevier, vol. 209(2), pages 353-375.
    3. Leucht, Anne & Paparoditis, Efstathios & Rademacher, Daniel & Sapatinas, Theofanis, 2022. "Testing equality of spectral density operators for functional processes," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    4. Rademacher, Daniel & Kreiß, Jens-Peter & Paparoditis, Efstathios, 2024. "Asymptotic normality of spectral means of Hilbert space valued random processes," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
    5. Brendan K. Beare & Juwon Seo & Won-Ki Seo, 2017. "Cointegrated Linear Processes in Hilbert Space," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 1010-1027, November.
    6. Klepsch, J. & Klüppelberg, C., 2017. "An innovations algorithm for the prediction of functional linear processes," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 252-271.
    7. Hörmann, Siegfried & Jammoul, Fatima, 2022. "Consistently recovering the signal from noisy functional data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    8. van Delft, Anne, 2020. "A note on quadratic forms of stationary functional time series under mild conditions," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4206-4251.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yichao & Pun, Chi Seng, 2019. "A bootstrap-based KPSS test for functional time series," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    2. Salish, Nazarii & Gleim, Alexander, 2019. "A moment-based notion of time dependence for functional time series," Journal of Econometrics, Elsevier, vol. 212(2), pages 377-392.
    3. Haixu Wang & Jiguo Cao, 2023. "Nonlinear prediction of functional time series," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    4. Klepsch, J. & Klüppelberg, C. & Wei, T., 2017. "Prediction of functional ARMA processes with an application to traffic data," Econometrics and Statistics, Elsevier, vol. 1(C), pages 128-149.
    5. Alexander Gleim & Nazarii Salish, 2022. "Forecasting Environmental Data: An example to ground-level ozone concentration surfaces," Papers 2202.03332, arXiv.org.
    6. Horváth, Lajos & Kokoszka, Piotr & Rice, Gregory, 2014. "Testing stationarity of functional time series," Journal of Econometrics, Elsevier, vol. 179(1), pages 66-82.
    7. Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
    8. Holger Dette & Kevin Kokot & Stanislav Volgushev, 2020. "Testing relevant hypotheses in functional time series via self‐normalization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 629-660, July.
    9. Berkes, István & Horváth, Lajos & Rice, Gregory, 2016. "On the asymptotic normality of kernel estimators of the long run covariance of functional time series," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 150-175.
    10. Dominique Guégan & Matteo Iacopini, 2018. "Nonparameteric forecasting of multivariate probability density functions," Documents de travail du Centre d'Economie de la Sorbonne 18012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    11. Sven Otto & Nazarii Salish, 2022. "Approximate Factor Models for Functional Time Series," Papers 2201.02532, arXiv.org, revised May 2024.
    12. Farzad Sabzikar & Piotr Kokoszka, 2023. "Tempered functional time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(3), pages 280-293, May.
    13. Dominique Guegan & Matteo Iacopini, 2018. "Nonparametric forecasting of multivariate probability density functions," Post-Print halshs-01821815, HAL.
    14. Mestre, Guillermo & Portela, José & Rice, Gregory & Muñoz San Roque, Antonio & Alonso, Estrella, 2021. "Functional time series model identification and diagnosis by means of auto- and partial autocorrelation analysis," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    15. Degui Li & Peter M. Robinson & Han Lin Shang, 2021. "Local Whittle estimation of long‐range dependence for functional time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 685-695, September.
    16. Dominique Guegan & Matteo Iacopini, 2018. "Nonparametric forecasting of multivariate probability density functions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01821815, HAL.
    17. Matteo Iacopini & Dominique Guégan, 2018. "Nonparametric Forecasting of Multivariate Probability Density Functions," Working Papers 2018:15, Department of Economics, University of Venice "Ca' Foscari".
    18. Daniel R. Kowal & David S. Matteson & David Ruppert, 2019. "Functional Autoregression for Sparsely Sampled Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 97-109, January.
    19. Amira Elayouty & Marian Scott & Claire Miller, 2022. "Time-Varying Functional Principal Components for Non-Stationary EpCO $$_2$$ 2 in Freshwater Systems," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 506-522, September.
    20. van Delft, Anne, 2020. "A note on quadratic forms of stationary functional time series under mild conditions," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4206-4251.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:154:y:2017:i:c:p:282-295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.