IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i23p4508-d987723.html
   My bibliography  Save this article

Nonparametric Estimation of the Expected Shortfall Regression for Quasi-Associated Functional Data

Author

Listed:
  • Larbi Ait-Hennani

    (Department of Statistic and Informatics, IUT, Lille 2 University, Rond-point de l’Europe, BP. 557, F 59060 Roubaix, France)

  • Zoulikha Kaid

    (Department of Mathematics, College of Science, King Khalid University, Abha 62529, Saudi Arabia)

  • Ali Laksaci

    (Department of Mathematics, College of Science, King Khalid University, Abha 62529, Saudi Arabia)

  • Mustapha Rachdi

    (Laboratoire AGEIS EA 7407, Université Grenoble Alpes (France), UFR SHS, BP. 47, CEDEX 09, F 38040 Grenoble, France)

Abstract

In this paper, we study the nonparametric estimation of the expected shortfall regression when the exogenous observation is functional. The constructed estimator is obtained by combining the double kernels estimator of both conditional value at risk and conditional density function. The asymptotic proprieties of this estimator are established under weak dependency condition. Precisely, we assume that the observations are generated from quasi-associated functional time series and we prove the almost complete convergence of the constructed estimator. This asymptotic result is obtained under a standard condition of functional time series analysis. The finite sample performance of this estimator is evaluated using artificial data.

Suggested Citation

  • Larbi Ait-Hennani & Zoulikha Kaid & Ali Laksaci & Mustapha Rachdi, 2022. "Nonparametric Estimation of the Expected Shortfall Regression for Quasi-Associated Functional Data," Mathematics, MDPI, vol. 10(23), pages 1-23, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4508-:d:987723
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/23/4508/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/23/4508/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Masry, Elias, 2005. "Nonparametric regression estimation for dependent functional data: asymptotic normality," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 155-177, January.
    2. Cai, Zongwu & Wang, Xian, 2008. "Nonparametric estimation of conditional VaR and expected shortfall," Journal of Econometrics, Elsevier, vol. 147(1), pages 120-130, November.
    3. Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019. "Dynamic semiparametric models for expected shortfall (and Value-at-Risk)," Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
    4. Piotr Kokoszka & Hong Miao & Xi Zhang, 2015. "Functional Dynamic Factor Model for Intraday Price Curves," Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 456-477.
    5. Sebastian Bayer & Timo Dimitriadis, 2022. "Regression-Based Expected Shortfall Backtesting [Backtesting Expected Shortfall]," Journal of Financial Econometrics, Oxford University Press, vol. 20(3), pages 437-471.
    6. James W. Taylor, 2019. "Forecasting Value at Risk and Expected Shortfall Using a Semiparametric Approach Based on the Asymmetric Laplace Distribution," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 121-133, January.
    7. Frédéric Ferraty & Alejandro Quintela-Del-Río, 2016. "Conditional VAR and Expected Shortfall: A New Functional Approach," Econometric Reviews, Taylor & Francis Journals, vol. 35(2), pages 263-292, February.
    8. Frédéric Ferraty & Aldo Goia & Philippe Vieu, 2002. "Functional nonparametric model for time series: a fractal approach for dimension reduction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 11(2), pages 317-344, December.
    9. Müller, Hans-Georg & Sen, Rituparna & Stadtmüller, Ulrich, 2011. "Functional data analysis for volatility," Journal of Econometrics, Elsevier, vol. 165(2), pages 233-245.
    10. O. Scaillet, 2004. "Nonparametric Estimation and Sensitivity Analysis of Expected Shortfall," Mathematical Finance, Wiley Blackwell, vol. 14(1), pages 115-129, January.
    11. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    12. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    13. Alexander, S. & Coleman, T.F. & Li, Y., 2006. "Minimizing CVaR and VaR for a portfolio of derivatives," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 583-605, February.
    14. Marri, Fouad & Moutanabbir, Khouzeima, 2022. "Risk aggregation and capital allocation using a new generalized Archimedean copula," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 75-90.
    15. Yamai, Yasuhiro & Yoshiba, Toshinao, 2002. "On the Validity of Value-at-Risk: Comparative Analyses with Expected Shortfall," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 20(1), pages 57-85, January.
    16. Alfonso Novales & Laura Garcia-Jorcano, 2019. "Backtesting extreme value theory models of expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 19(5), pages 799-825, May.
    17. Wong, Woon K., 2010. "Backtesting value-at-risk based on tail losses," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 526-538, June.
    18. Han Lin Shang, 2017. "Forecasting intraday S&P 500 index returns: A functional time series approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(7), pages 741-755, November.
    19. Mustapha Rachdi & Ali Laksaci & Noriah M. Al-Kandari, 2022. "Expectile regression for spatial functional data analysis (sFDA)," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(5), pages 627-655, July.
    20. Acereda, Beatriz & Leon, Angel & Mora, Juan, 2020. "Estimating the expected shortfall of cryptocurrencies: An evaluation based on backtesting," Finance Research Letters, Elsevier, vol. 33(C).
    21. Rong Jiang & Xueping Hu & Keming Yu, 2022. "Single-Index Expectile Models for Estimating Conditional Value at Risk and Expected Shortfall [Coherent Measures of Risk]," Journal of Financial Econometrics, Oxford University Press, vol. 20(2), pages 345-366.
    22. Bulinski, Alexander & Suquet, Charles, 2001. "Normal approximation for quasi-associated random fields," Statistics & Probability Letters, Elsevier, vol. 54(2), pages 215-226, September.
    23. Zhenjie Liang & Futian Weng & Yuanting Ma & Yan Xu & Miao Zhu & Cai Yang, 2022. "Measurement and Analysis of High Frequency Assert Volatility Based on Functional Data Analysis," Mathematics, MDPI, vol. 10(7), pages 1-11, April.
    24. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    25. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Litimein, Ouahiba & Laksaci, Ali & Mechab, Boubaker & Bouzebda, Salim, 2023. "Local linear estimate of the functional expectile regression," Statistics & Probability Letters, Elsevier, vol. 192(C).
    2. Yanchun Zhao & Mengzhu Zhang & Qian Ni & Xuhui Wang, 2023. "Adaptive Nonparametric Density Estimation with B-Spline Bases," Mathematics, MDPI, vol. 11(2), pages 1-12, January.
    3. Litimein, Ouahiba & Laksaci, Ali & Ait-Hennani, Larbi & Mechab, Boubaker & Rachdi, Mustapha, 2024. "Asymptotic normality of the local linear estimator of the functional expectile regression," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    4. Salim Bouzebda & Boutheina Nemouchi, 2023. "Weak-convergence of empirical conditional processes and conditional U-processes involving functional mixing data," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 33-88, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    2. Yan Fang & Jian Li & Yinglin Liu & Yunfan Zhao, 2023. "Semiparametric estimation of expected shortfall and its application in finance," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 835-851, July.
    3. d’Addona, Stefano & Khanom, Najrin, 2022. "Estimating tail-risk using semiparametric conditional variance with an application to meme stocks," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 241-260.
    4. Taylor, James W., 2022. "Forecasting Value at Risk and expected shortfall using a model with a dynamic omega ratio," Journal of Banking & Finance, Elsevier, vol. 140(C).
    5. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    6. Merlo, Luca & Petrella, Lea & Raponi, Valentina, 2021. "Forecasting VaR and ES using a joint quantile regression and its implications in portfolio allocation," Journal of Banking & Finance, Elsevier, vol. 133(C).
    7. So Yeon Chun & Alexander Shapiro & Stan Uryasev, 2012. "Conditional Value-at-Risk and Average Value-at-Risk: Estimation and Asymptotics," Operations Research, INFORMS, vol. 60(4), pages 739-756, August.
    8. Luca Merlo & Lea Petrella & Valentina Raponi, 2021. "Forecasting VaR and ES using a joint quantile regression and implications in portfolio allocation," Papers 2106.06518, arXiv.org.
    9. Brandtner, Mario & Kürsten, Wolfgang, 2015. "Decision making with Expected Shortfall and spectral risk measures: The problem of comparative risk aversion," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 268-280.
    10. Qifa Xu & Lu Chen & Cuixia Jiang & Yezheng Liu, 2022. "Forecasting expected shortfall and value at risk with a joint elicitable mixed data sampling model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 407-421, April.
    11. Jinyu Zhou & Jigao Yan & Dongya Cheng, 2024. "Strong consistency of tail value-at-risk estimator and corresponding general results under widely orthant dependent samples," Statistical Papers, Springer, vol. 65(6), pages 3357-3394, August.
    12. Huang, Jinbo & Ding, Ashley & Li, Yong & Lu, Dong, 2020. "Increasing the risk management effectiveness from higher accuracy: A novel non-parametric method," Pacific-Basin Finance Journal, Elsevier, vol. 62(C).
    13. Leorato, Samantha & Peracchi, Franco & Tanase, Andrei V., 2012. "Asymptotically efficient estimation of the conditional expected shortfall," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 768-784.
    14. Li, Dan & Clements, Adam & Drovandi, Christopher, 2023. "A Bayesian approach for more reliable tail risk forecasts," Journal of Financial Stability, Elsevier, vol. 64(C).
    15. Zhengkun Li & Minh-Ngoc Tran & Chao Wang & Richard Gerlach & Junbin Gao, 2020. "A Bayesian Long Short-Term Memory Model for Value at Risk and Expected Shortfall Joint Forecasting," Papers 2001.08374, arXiv.org, revised May 2021.
    16. Sullivan Hu'e & Christophe Hurlin & Yang Lu, 2024. "Backtesting Expected Shortfall: Accounting for both duration and severity with bivariate orthogonal polynomials," Papers 2405.02012, arXiv.org, revised May 2024.
    17. Qiu, Zhiguo & Lazar, Emese & Nakata, Keiichi, 2024. "VaR and ES forecasting via recurrent neural network-based stateful models," International Review of Financial Analysis, Elsevier, vol. 92(C).
    18. David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
    19. Storti, Giuseppe & Wang, Chao, 2022. "A multivariate semi-parametric portfolio risk optimization and forecasting framework," MPRA Paper 115266, University Library of Munich, Germany.
    20. Federico Gatta & Fabrizio Lillo & Piero Mazzarisi, 2024. "CAESar: Conditional Autoregressive Expected Shortfall," Papers 2407.06619, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4508-:d:987723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.