IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v63y2022i6d10.1007_s00362-022-01290-3.html
   My bibliography  Save this article

Estimation methods for stationary Gegenbauer processes

Author

Listed:
  • Richard Hunt

    (University of Sydney)

  • Shelton Peiris

    (University of Sydney)

  • Neville Weber

    (University of Sydney)

Abstract

This paper reviews alternative methods for estimation for stationary Gegenbauer processes specifically, as distinct from the more general long memory models. A short set of Monte Carlo simulations is used to compare the accuracy of these methods. The conclusion found is that a Bayesian technique results in the highest accuracy. The paper is completed with an examination of the SILSO Sunspot Number series as collated by the Royal Observatory of Belgium.

Suggested Citation

  • Richard Hunt & Shelton Peiris & Neville Weber, 2022. "Estimation methods for stationary Gegenbauer processes," Statistical Papers, Springer, vol. 63(6), pages 1707-1741, December.
  • Handle: RePEc:spr:stpapr:v:63:y:2022:i:6:d:10.1007_s00362-022-01290-3
    DOI: 10.1007/s00362-022-01290-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-022-01290-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-022-01290-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    2. Audrey Lustig & Philippe Charlot & Vêlayoudom Marimoutou, 2017. "The memory of ENSO revisited by a 2-factor Gegenbauer process," Post-Print hal-01676672, HAL.
    3. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    4. Degui Li & Peter M. Robinson & Han Lin Shang, 2020. "Long-Range Dependent Curve Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 957-971, April.
    5. Henry L. Gray & Nien‐Fan Zhang & Wayne A. Woodward, 1994. "On Generalized Fractional Processes – A Correction," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(5), pages 561-562, September.
    6. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    7. Javier Hidalgo & Philippe Soulier, 2004. "Estimation of the location and exponent of the spectral singularity of a long memory process," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(1), pages 55-81, January.
    8. Hidalgo, Javier, 2005. "Semiparametric estimation for stationary processes whose spectra have an unknown pole," LSE Research Online Documents on Economics 6842, London School of Economics and Political Science, LSE Library.
    9. Giraitis, L & Hidalgo, J & Robinson, Peter M., 2001. "Gaussian estimation of parametric spectral density with unknown pole," LSE Research Online Documents on Economics 297, London School of Economics and Political Science, LSE Library.
    10. Heni Boubaker, 2015. "Wavelet Estimation of Gegenbauer Processes: Simulation and Empirical Application," Computational Economics, Springer;Society for Computational Economics, vol. 46(4), pages 551-574, December.
    11. Ching‐Fan Chung, 1996. "A Generalized Fractionally Integrated Autoregressive Moving‐Average Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(2), pages 111-140, March.
    12. Josu Arteche & Peter M. Robinson, 2000. "Semiparametric Inference in Seasonal and Cyclical Long Memory Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 1-25, January.
    13. Giraitis, Liudas & Hidalgo, Javier & Robinson, Peter, 2001. "Gaussian estimation of parametric spectral density with unknown pole," LSE Research Online Documents on Economics 2182, London School of Economics and Political Science, LSE Library.
    14. Hunt Richard & Peiris Shelton & Weber Neville, 2021. "A General Frequency Domain Estimation Method for Gegenbauer Processes," Journal of Time Series Econometrics, De Gruyter, vol. 13(2), pages 119-144, July.
    15. Masaki Narukawa, 2016. "Semiparametric Whittle estimation of a cyclical long-memory time series based on generalised exponential models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 272-295, June.
    16. Jean‐Marc Bardet & Pierre R. Bertrand, 2010. "A Non‐Parametric Estimator of the Spectral Density of a Continuous‐Time Gaussian Process Observed at Random Times," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 458-476, September.
    17. Javier Hidalgo, 2005. "Semiparametric Estimation for Stationary Processes whose Spectra have an Unknown Pole," STICERD - Econometrics Paper Series 481, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    18. Kouamé, Euloge F. & Hili, Ouagnina, 2008. "Minimum distance estimation of k-factors GARMA processes," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3254-3261, December.
    19. Liudas Giraitis & Javier Hidalgo & Peter M Robinson, 2001. "Gaussian Estimation of Parametric Spectral Density with Unknown Pole," STICERD - Econometrics Paper Series 424, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    20. Hurvich, Clifford M., 2002. "Multistep forecasting of long memory series using fractional exponential models," International Journal of Forecasting, Elsevier, vol. 18(2), pages 167-179.
    21. McElroy, Tucker S. & Holan, Scott H., 2016. "Computation of the autocovariances for time series with multiple long-range persistencies," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 44-56.
    22. Dissanayake, G.S. & Peiris, M.S. & Proietti, T., 2016. "State space modeling of Gegenbauer processes with long memory," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 115-130.
    23. Bos, Charles S. & Koopman, Siem Jan & Ooms, Marius, 2014. "Long memory with stochastic variance model: A recursive analysis for US inflation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 144-157.
    24. Wilfredo Palma & Ngai Hang Chan, 2005. "Efficient Estimation of Seasonal Long‐Range‐Dependent Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(6), pages 863-892, November.
    25. Stefano Bertelli & Massimiliano Caporin, 2002. "A note on calculating autocovariances of long‐memory processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(5), pages 503-508, September.
    26. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    27. repec:wop:ubisop:0076 is not listed on IDEAS
    28. Josu Arteche, 2007. "The Analysis of Seasonal Long Memory: The Case of Spanish Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(6), pages 749-772, December.
    29. Peter M Robinson, 2006. "Conditional-Sum-of-Squares Estimation ofModels for Stationary Time Series with Long Memory," STICERD - Econometrics Paper Series 505, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    30. Bordignon, Silvano & Caporin, Massimiliano & Lisi, Francesco, 2007. "Generalised long-memory GARCH models for intra-daily volatility," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5900-5912, August.
    31. Henry L. Gray & Nien‐Fan Zhang & Wayne A. Woodward, 1989. "On Generalized Fractional Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(3), pages 233-257, May.
    32. Wayne A. Woodward & Q. C. Cheng & H. L. Gray, 1998. "A k‐Factor GARMA Long‐memory Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(4), pages 485-504, July.
    33. Jeffrey S. Pai & Nalini Ravishanker, 1998. "Bayesian analysis of autoregressive fractionally integrated moving‐average processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(1), pages 99-112, January.
    34. Garland Durham & John Geweke & Susan Porter‐Hudak & Fallaw Sowell, 2019. "Bayesian Inference for ARFIMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(4), pages 388-410, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul M. Beaumont & Aaron D. Smallwood, 2024. "Conditional sum of squares estimation of k-factor GARMA models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(3), pages 501-543, September.
    2. Oumaima Essefiani & Rachid El Halimi & Said Hamdoune, 2024. "Some Estimation Methods for a Random Coefficient in the Gegenbauer Autoregressive Moving-Average Model," Mathematics, MDPI, vol. 12(11), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    2. Beaumont, Paul & Smallwood, Aaron, 2019. "Inference for likelihood-based estimators of generalized long-memory processes," MPRA Paper 96313, University Library of Munich, Germany.
    3. Proietti, Tommaso & Maddanu, Federico, 2024. "Modelling cycles in climate series: The fractional sinusoidal waveform process," Journal of Econometrics, Elsevier, vol. 239(1).
    4. Paul M. Beaumont & Aaron D. Smallwood, 2024. "Conditional sum of squares estimation of k-factor GARMA models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(3), pages 501-543, September.
    5. Asai, Manabu & McAleer, Michael & Peiris, Shelton, 2020. "Realized stochastic volatility models with generalized Gegenbauer long memory," Econometrics and Statistics, Elsevier, vol. 16(C), pages 42-54.
    6. Guglielmo Maria Caporale & Juncal Cuñado & Luis A. Gil-Alana, 2013. "Modelling long-run trends and cycles in financial time series data," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 405-421, May.
    7. Beaumont, Paul & Smallwood, Aaron, 2019. "Conditional Sum of Squares Estimation of Multiple Frequency Long Memory Models," MPRA Paper 96314, University Library of Munich, Germany.
    8. Federico Maddanu, 2022. "A harmonically weighted filter for cyclical long memory processes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(1), pages 49-78, March.
    9. Hassler, Uwe, 2011. "Estimation of fractional integration under temporal aggregation," Journal of Econometrics, Elsevier, vol. 162(2), pages 240-247, June.
    10. repec:hal:journl:peer-00815563 is not listed on IDEAS
    11. Asai Manabu & Peiris Shelton & McAleer Michael & Allen David E., 2020. "Cointegrated Dynamics for a Generalized Long Memory Process: Application to Interest Rates," Journal of Time Series Econometrics, De Gruyter, vol. 12(1), pages 1-18, January.
    12. Shelton Peiris & Manabu Asai & Michael McAleer, 2017. "Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models," JRFM, MDPI, vol. 10(4), pages 1-16, December.
    13. Gil-Alana, Luis A. & Aye, Goodness C. & Gupta, Rangan, 2015. "Trends and cycles in historical gold and silver prices," Journal of International Money and Finance, Elsevier, vol. 58(C), pages 98-109.
    14. Gil-Alana, Luis A. & Gupta, Rangan, 2014. "Persistence and cycles in historical oil price data," Energy Economics, Elsevier, vol. 45(C), pages 511-516.
    15. Wilfredo Palma & Ngai Hang Chan, 2005. "Efficient Estimation of Seasonal Long‐Range‐Dependent Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(6), pages 863-892, November.
    16. Alex Gonzaga & Michael Hauser, 2011. "A wavelet Whittle estimator of generalized long-memory stochastic volatility," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(1), pages 23-48, March.
    17. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    18. Ould Haye, Mohamedou & Philippe, Anne, 2011. "Marginal density estimation for linear processes with cyclical long memory," Statistics & Probability Letters, Elsevier, vol. 81(9), pages 1354-1364, September.
    19. Giovanni Caggiano & Efrem Castelnuovo, 2008. "Long Memory and Non-Linearities in International Inflation," "Marco Fanno" Working Papers 0076, Dipartimento di Scienze Economiche "Marco Fanno".
    20. Abadir, Karim M. & Caggiano, Giovanni & Talmain, Gabriel, 2013. "Nelson–Plosser revisited: The ACF approach," Journal of Econometrics, Elsevier, vol. 175(1), pages 22-34.
    21. Rosa Espejo & Nikolai Leonenko & Andriy Olenko & María Ruiz-Medina, 2015. "On a class of minimum contrast estimators for Gegenbauer random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 657-680, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:63:y:2022:i:6:d:10.1007_s00362-022-01290-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.