IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/297.html
   My bibliography  Save this paper

Gaussian estimation of parametric spectral density with unknown pole

Author

Listed:
  • Giraitis, L
  • Hidalgo, J
  • Robinson, Peter M.

Abstract

We consider a parametric spectral density with power-law behaviour about a fractional pole at the unknown frequency !. The case of known !, especially ! = 0, is standard in the long memory literature. When ! is unknown, asymptotic distribution theory for estimates of parameters, including the (long) memory parameter, is significantly harder. We study a form of Gaussian estimate. We establish n ¡ consistency of the estimate of !, and discuss its (non-standard) limiting distributional behaviour. For the remaining parameter estimates, we establish P--n- consistency and asymptotic normality.

Suggested Citation

  • Giraitis, L & Hidalgo, J & Robinson, Peter M., 2001. "Gaussian estimation of parametric spectral density with unknown pole," LSE Research Online Documents on Economics 297, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:297
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/297/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robinson, P. M., 1978. "Alternative models for stationary stochastic processes," Stochastic Processes and their Applications, Elsevier, vol. 8(2), pages 141-152, December.
    2. Henry L. Gray & Nien‐Fan Zhang & Wayne A. Woodward, 1989. "On Generalized Fractional Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(3), pages 233-257, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baillie, Richard T & Bollerslev, Tim, 1994. "Cointegration, Fractional Cointegration, and Exchange Rate Dynamics," Journal of Finance, American Finance Association, vol. 49(2), pages 737-745, June.
    2. Leschinski, Christian & Sibbertsen, Philipp, 2014. "Model Order Selection in Seasonal/Cyclical Long Memory Models," Hannover Economic Papers (HEP) dp-535, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    3. Dominique Guegan, 2005. "How can we Define the Concept of Long Memory? An Econometric Survey," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 113-149.
    4. Gil-Alana, Luis A. & Trani, Tommaso, 2019. "The cyclical structure of the UK inflation rate: 1210–2016," Economics Letters, Elsevier, vol. 181(C), pages 182-185.
    5. Richard Hunt & Shelton Peiris & Neville Weber, 2022. "Estimation methods for stationary Gegenbauer processes," Statistical Papers, Springer, vol. 63(6), pages 1707-1741, December.
    6. Boubaker Heni & Boutahar Mohamed, 2011. "A wavelet-based approach for modelling exchange rates," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(2), pages 201-220, June.
    7. Guglielmo Maria Caporale & Luis A. Gil-Alana & Carlos Poza, 2021. "Cycles and Long-Range Behaviour in the European Stock Markets," Dynamic Modeling and Econometrics in Economics and Finance, in: Gilles Dufrénot & Takashi Matsuki (ed.), Recent Econometric Techniques for Macroeconomic and Financial Data, pages 293-302, Springer.
    8. Rocha Souza, Leonardo & Jorge Soares, Lacir, 2007. "Electricity rationing and public response," Energy Economics, Elsevier, vol. 29(2), pages 296-311, March.
    9. Stefan C. Norrbin & Aaron D. Smallwood, 2006. "Generalized long memory processes, failure of cointegration tests and exchange rate dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(4), pages 409-417.
    10. Giraitis, Liudas & Hidalgo, Javier & Robinson, Peter, 2001. "Gaussian estimation of parametric spectral density with unknown pole," LSE Research Online Documents on Economics 2182, London School of Economics and Political Science, LSE Library.
    11. del Barrio Castro, Tomás & Rachinger, Heiko, 2021. "Aggregation of Seasonal Long-Memory Processes," Econometrics and Statistics, Elsevier, vol. 17(C), pages 95-106.
    12. Baillie, Richard T. & Cho, Dooyeon & Rho, Seunghwa, 2024. "Combining Long and Short Memory in Time Series Models: the Role of Asymptotic Correlations of the MLEs," Econometrics and Statistics, Elsevier, vol. 29(C), pages 88-112.
    13. Sandro Sapio, 2004. "Markets Design, Bidding Rules, and Long Memory in Electricity Prices," Revue d'Économie Industrielle, Programme National Persée, vol. 107(1), pages 151-170.
    14. Proietti, Tommaso & Luati, Alessandra, 2015. "The generalised autocovariance function," Journal of Econometrics, Elsevier, vol. 186(1), pages 245-257.
    15. Granger, C. W. J. & Siklos, Pierre L., 1995. "Systematic sampling, temporal aggregation, seasonal adjustment, and cointegration theory and evidence," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 357-369.
    16. Paramsothy Silvapulle, 2001. "A Score Test For Seasonal Fractional Integration And Cointegration," Econometric Reviews, Taylor & Francis Journals, vol. 20(1), pages 85-104.
    17. J. Arteche & C. Velasco, 2005. "Trimming and Tapering Semi‐Parametric Estimates in Asymmetric Long Memory Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 581-611, July.
    18. Diongue Abdou Ka & Dominique Guegan, 2008. "Estimation of k-Factor Gigarch Process: A Monte Carlo Study," Post-Print halshs-00375758, HAL.
    19. Laurent Ferrara & Dominique Guegan, 2006. "Fractional seasonality: Models and Application to Economic Activity in the Euro Area," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00185370, HAL.
    20. Guglielmo Maria Caporale & Luis Gil-Alana, 2012. "Long Memory and Volatility Dynamics in the US Dollar Exchange Rate," Multinational Finance Journal, Multinational Finance Journal, vol. 16(1-2), pages 105-136, March - J.

    More about this item

    Keywords

    Long range dependence; unknown pole. JEL classification code : C22;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.