IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v106y2022i1d10.1007_s10182-021-00394-9.html
   My bibliography  Save this article

A harmonically weighted filter for cyclical long memory processes

Author

Listed:
  • Federico Maddanu

    (Università di Roma Tor Vergata)

Abstract

The estimation of the long memory parameter d is a widely discussed issue in the literature. The harmonically weighted (HW) process was recently introduced for long memory time series with an unbounded spectral density at the origin. In contrast to the most famous fractionally integrated process, the HW approach does not require the estimation of the d parameter, but it may be just as able to capture long memory as the fractionally integrated model, if the sample size is not too large. Our contribution is a generalization of the HW model, denominated the Generalized harmonically weighted (GHW) process, which allows for an unbounded spectral density at $$k \ge 1$$ k ≥ 1 frequencies away from the origin. The convergence in probability of the Whittle estimator is provided for the GHW process, along with a discussion on simulation methods. Fit and forecast performances are evaluated via an empirical application on paleoclimatic data. Our main conclusion is that the above generalization is able to model long memory, as well as its classical competitor, the fractionally differenced Gegenbauer process, does. In addition, the GHW process does not require the estimation of the memory parameter, simplifying the issue of how to disentangle long memory from a (moderately persistent) short memory component. This leads to a clear advantage of our formulation over the fractional long memory approach.

Suggested Citation

  • Federico Maddanu, 2022. "A harmonically weighted filter for cyclical long memory processes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(1), pages 49-78, March.
  • Handle: RePEc:spr:alstar:v:106:y:2022:i:1:d:10.1007_s10182-021-00394-9
    DOI: 10.1007/s10182-021-00394-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-021-00394-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-021-00394-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    2. Leschinski, Christian & Sibbertsen, Philipp, 2019. "Model order selection in periodic long memory models," Econometrics and Statistics, Elsevier, vol. 9(C), pages 78-94.
    3. Giraitis, L & Hidalgo, J & Robinson, Peter M., 2001. "Gaussian estimation of parametric spectral density with unknown pole," LSE Research Online Documents on Economics 297, London School of Economics and Political Science, LSE Library.
    4. Ching‐Fan Chung, 1996. "A Generalized Fractionally Integrated Autoregressive Moving‐Average Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(2), pages 111-140, March.
    5. Josu Arteche & Peter M. Robinson, 2000. "Semiparametric Inference in Seasonal and Cyclical Long Memory Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 1-25, January.
    6. Uwe Hassler & Mehdi Hosseinkouchack, 2020. "Harmonically Weighted Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(1), pages 41-66, January.
    7. Giraitis, Liudas & Hidalgo, Javier & Robinson, Peter, 2001. "Gaussian estimation of parametric spectral density with unknown pole," LSE Research Online Documents on Economics 2182, London School of Economics and Political Science, LSE Library.
    8. Castle, Jennifer L. & Hendry, David F., 2020. "Climate Econometrics: An Overview," Foundations and Trends(R) in Econometrics, now publishers, vol. 10(3-4), pages 145-322, August.
    9. Liudas Giraitis & Javier Hidalgo & Peter M Robinson, 2001. "Gaussian Estimation of Parametric Spectral Density with Unknown Pole," STICERD - Econometrics Paper Series 424, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    10. Reisen, Valderio Anselmo & Rodrigues, Alexandre L. & Palma, Wilfredo, 2006. "Estimation of seasonal fractionally integrated processes," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 568-582, January.
    11. Laurent Ferrara & Dominique Guegan, 1999. "Estimation and Applications of Gegenbauer Processes," Working Papers 99-27, Center for Research in Economics and Statistics.
    12. Henry L. Gray & Nien‐Fan Zhang & Wayne A. Woodward, 1989. "On Generalized Fractional Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(3), pages 233-257, May.
    13. Robinson, Peter M. & Velasco, Carlos, 2000. "Whittle pseudo-maximum likelihood estimation for nonstationary time series," LSE Research Online Documents on Economics 2273, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Proietti, Tommaso & Maddanu, Federico, 2024. "Modelling cycles in climate series: The fractional sinusoidal waveform process," Journal of Econometrics, Elsevier, vol. 239(1).
    2. Beaumont, Paul & Smallwood, Aaron, 2019. "Inference for likelihood-based estimators of generalized long-memory processes," MPRA Paper 96313, University Library of Munich, Germany.
    3. Richard Hunt & Shelton Peiris & Neville Weber, 2022. "Estimation methods for stationary Gegenbauer processes," Statistical Papers, Springer, vol. 63(6), pages 1707-1741, December.
    4. Wilfredo Palma & Ngai Hang Chan, 2005. "Efficient Estimation of Seasonal Long‐Range‐Dependent Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(6), pages 863-892, November.
    5. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    6. Rosa Espejo & Nikolai Leonenko & Andriy Olenko & María Ruiz-Medina, 2015. "On a class of minimum contrast estimators for Gegenbauer random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 657-680, December.
    7. Beaumont, Paul & Smallwood, Aaron, 2019. "Conditional Sum of Squares Estimation of Multiple Frequency Long Memory Models," MPRA Paper 96314, University Library of Munich, Germany.
    8. Guglielmo Maria Caporale & Juncal Cuñado & Luis A. Gil-Alana, 2013. "Modelling long-run trends and cycles in financial time series data," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 405-421, May.
    9. Gil-Alana, Luis A. & Aye, Goodness C. & Gupta, Rangan, 2015. "Trends and cycles in historical gold and silver prices," Journal of International Money and Finance, Elsevier, vol. 58(C), pages 98-109.
    10. Violetta Dalla & Javier Hidalgo, 2005. "A Parametric Bootstrap Test for Cycles," STICERD - Econometrics Paper Series 486, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    11. Kouamé, Euloge F. & Hili, Ouagnina, 2008. "Minimum distance estimation of k-factors GARMA processes," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3254-3261, December.
    12. Javier Hidalgo & Philippe Soulier, 2004. "Estimation of the location and exponent of the spectral singularity of a long memory process," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(1), pages 55-81, January.
    13. Alex Gonzaga & Michael Hauser, 2011. "A wavelet Whittle estimator of generalized long-memory stochastic volatility," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(1), pages 23-48, March.
    14. Hidalgo, Javier, 2005. "Semiparametric estimation for stationary processes whose spectra have an unknown pole," LSE Research Online Documents on Economics 6842, London School of Economics and Political Science, LSE Library.
    15. Javier Hidalgo, 2005. "Semiparametric Estimation for Stationary Processes whose Spectra have an Unknown Pole," STICERD - Econometrics Paper Series 481, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    16. Ould Haye, Mohamedou & Philippe, Anne, 2011. "Marginal density estimation for linear processes with cyclical long memory," Statistics & Probability Letters, Elsevier, vol. 81(9), pages 1354-1364, September.
    17. McCoy, E. J. & Stephens, D. A., 2004. "Bayesian time series analysis of periodic behaviour and spectral structure," International Journal of Forecasting, Elsevier, vol. 20(4), pages 713-730.
    18. Abadir Karim M. & Larsson Rolf, 2012. "Biases of Correlograms and of AR Representations of Stationary Series," Journal of Time Series Econometrics, De Gruyter, vol. 4(1), pages 1-11, May.
    19. Dalla, Violetta & Giraitis, Liudas & Robinson, Peter M., 2020. "Asymptotic theory for time series with changing mean and variance," Journal of Econometrics, Elsevier, vol. 219(2), pages 281-313.
    20. Voges, Michelle & Sibbertsen, Philipp, 2021. "Cyclical fractional cointegration," Econometrics and Statistics, Elsevier, vol. 19(C), pages 114-129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:106:y:2022:i:1:d:10.1007_s10182-021-00394-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.