IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v19y1998i1p99-112.html
   My bibliography  Save this article

Bayesian analysis of autoregressive fractionally integrated moving‐average processes

Author

Listed:
  • Jeffrey S. Pai
  • Nalini Ravishanker

Abstract

For the autoregressive fractionally integrated moving‐average (ARFIMA) processes which characterize both long‐memory and short‐memory behavior in time series, we formulate Bayesian inference using Markov chain Monte Carlo methods. We derive a form for the joint posterior distribution of the parameters that is computationally feasible for repetitive evaluation within a modified Gibbs sampling algorithm that we employ. We illustrate our approach through two examples.

Suggested Citation

  • Jeffrey S. Pai & Nalini Ravishanker, 1998. "Bayesian analysis of autoregressive fractionally integrated moving‐average processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(1), pages 99-112, January.
  • Handle: RePEc:bla:jtsera:v:19:y:1998:i:1:p:99-112
    DOI: 10.1111/1467-9892.00079
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9892.00079
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9892.00079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ross Doppelt & Keith O'Hara, 2018. "Bayesian Estimation of Fractionally Integrated Vector Autoregressions and an Application to Identified Technology Shocks," 2018 Meeting Papers 1212, Society for Economic Dynamics.
    2. Ossama Mikhail & Curtis J. Eberwein & Jagdish Handa, 2003. "Testing and Estimating Persistence in Canadian Unemployment," Econometrics 0311004, University Library of Munich, Germany.
    3. Richard Hunt & Shelton Peiris & Neville Weber, 2022. "Estimation methods for stationary Gegenbauer processes," Statistical Papers, Springer, vol. 63(6), pages 1707-1741, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:19:y:1998:i:1:p:99-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.