IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v17y1996i2p111-140.html
   My bibliography  Save this article

A Generalized Fractionally Integrated Autoregressive Moving‐Average Process

Author

Listed:
  • Ching‐Fan Chung

Abstract

. This paper considers the long memory Gegenbauer autoregressive movingaverage (GARMA) process that generalizes the fractionally integrated ARMA (ARFIMA) process to allow for hyperbolic and sinusoidal decay in autocorrelations. We propose the conditional sum of squares method for estimation (which is asymptotically equivalent to the maximum likelihood estimation) and develop the asymptotic theory. Many results are in sharp contrast to those of the ARFIMA model. Simulations are conducted to assess the performance of the proposed estimators in small sample applications. Two applications to the sunspot data and the US inflation rates based on the wholesale price index are provided.

Suggested Citation

  • Ching‐Fan Chung, 1996. "A Generalized Fractionally Integrated Autoregressive Moving‐Average Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(2), pages 111-140, March.
  • Handle: RePEc:bla:jtsera:v:17:y:1996:i:2:p:111-140
    DOI: 10.1111/j.1467-9892.1996.tb00268.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.1996.tb00268.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.1996.tb00268.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shelton Peiris & Manabu Asai & Michael McAleer, 2017. "Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models," JRFM, MDPI, vol. 10(4), pages 1-16, December.
    2. Paul M. Beaumont & Aaron D. Smallwood, 2024. "Conditional sum of squares estimation of k-factor GARMA models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(3), pages 501-543, September.
    3. Aaron D. Smallwood & Stefan C. Norrbin, 2006. "Generalized long memory processes, failure of cointegration tests and exchange rate dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(4), pages 409-417, May.
    4. Guglielmo Maria Caporale & Luis Gil-Alana, 2012. "Long Memory and Volatility Dynamics in the US Dollar Exchange Rate," Multinational Finance Journal, Multinational Finance Journal, vol. 16(1-2), pages 105-136, March - J.
    5. Giorgio Canarella & Luis A. Gil-Alana & Rangan Gupta & Stephen M. Miller, 2020. "Modeling US historical time-series prices and inflation using alternative long-memory approaches," Empirical Economics, Springer, vol. 58(4), pages 1491-1511, April.
    6. Luis Alberiko Gil-Alaña & Juan C. Cuestas, 2012. "A non-linear approach with long range dependence based on Chebyshev polynomials," NCID Working Papers 11/2012, Navarra Center for International Development, University of Navarra.
    7. Proietti, Tommaso & Maddanu, Federico, 2024. "Modelling cycles in climate series: The fractional sinusoidal waveform process," Journal of Econometrics, Elsevier, vol. 239(1).
    8. Federico Maddanu, 2022. "A harmonically weighted filter for cyclical long memory processes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(1), pages 49-78, March.
    9. Guglielmo Maria Caporale & Luis Alberiko Gil-Alana, 2023. "Long-Run Trends and Cycles in US House Prices," CESifo Working Paper Series 10751, CESifo.
    10. Asai, Manabu & McAleer, Michael & Peiris, Shelton, 2020. "Realized stochastic volatility models with generalized Gegenbauer long memory," Econometrics and Statistics, Elsevier, vol. 16(C), pages 42-54.
    11. Gil-Alana, Luis A. & Trani, Tommaso, 2019. "The cyclical structure of the UK inflation rate: 1210–2016," Economics Letters, Elsevier, vol. 181(C), pages 182-185.
    12. Richard Hunt & Shelton Peiris & Neville Weber, 2022. "Estimation methods for stationary Gegenbauer processes," Statistical Papers, Springer, vol. 63(6), pages 1707-1741, December.
    13. Guglielmo Maria Caporale & Luis A. Gil-Alana & Carlos Poza, 2021. "Cycles and Long-Range Behaviour in the European Stock Markets," Dynamic Modeling and Econometrics in Economics and Finance, in: Gilles Dufrénot & Takashi Matsuki (ed.), Recent Econometric Techniques for Macroeconomic and Financial Data, pages 293-302, Springer.
    14. Beaumont, Paul & Smallwood, Aaron, 2019. "Inference for likelihood-based estimators of generalized long-memory processes," MPRA Paper 96313, University Library of Munich, Germany.
    15. Wilfredo Palma & Ngai Hang Chan, 2005. "Efficient Estimation of Seasonal Long‐Range‐Dependent Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(6), pages 863-892, November.
    16. Beaumont, Paul & Smallwood, Aaron, 2019. "Conditional Sum of Squares Estimation of Multiple Frequency Long Memory Models," MPRA Paper 96314, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:17:y:1996:i:2:p:111-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.