IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v26y2005i6p863-892.html
   My bibliography  Save this article

Efficient Estimation of Seasonal Long‐Range‐Dependent Processes

Author

Listed:
  • Wilfredo Palma
  • Ngai Hang Chan

Abstract

. This paper studies asymptotic properties of the exact maximum likelihood estimates (MLE) for a general class of Gaussian seasonal long‐range‐dependent processes. This class includes the commonly used Gegenbauer and seasonal autoregressive fractionally integrated moving average processes. By means of an approximation of the spectral density, the exact MLE of this class are shown to be consistent, asymptotically normal and efficient. Finite sample performance of these estimates is examined by Monte Carlo simulations and it is shown that the estimates behave very well even for moderate sample sizes. The estimation methodology is illustrated by a real‐life Internet traffic example.

Suggested Citation

  • Wilfredo Palma & Ngai Hang Chan, 2005. "Efficient Estimation of Seasonal Long‐Range‐Dependent Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(6), pages 863-892, November.
  • Handle: RePEc:bla:jtsera:v:26:y:2005:i:6:p:863-892
    DOI: 10.1111/j.1467-9892.2005.00447.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.2005.00447.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.2005.00447.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Josu Arteche & Peter M. Robinson, 2000. "Semiparametric Inference in Seasonal and Cyclical Long Memory Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 1-25, January.
    2. Ray, Bonnie K., 1993. "Long-range forecasting of IBM product revenues using a seasonal fractionally differenced ARMA model," International Journal of Forecasting, Elsevier, vol. 9(2), pages 255-269, August.
    3. Uwe Hassler, 1994. "(Mis)Specification Of Long Memory In Seasonal Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(1), pages 19-30, January.
    4. Ooms, M., 1995. "Flexible Seasonal Long Memory and Economic Time Series," Econometric Institute Research Papers EI 9515-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
    6. Giraitis, L & Hidalgo, J & Robinson, Peter M., 2001. "Gaussian estimation of parametric spectral density with unknown pole," LSE Research Online Documents on Economics 297, London School of Economics and Political Science, LSE Library.
    7. Ching‐Fan Chung, 1996. "A Generalized Fractionally Integrated Autoregressive Moving‐Average Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(2), pages 111-140, March.
    8. Giraitis, Liudas & Hidalgo, Javier & Robinson, Peter, 2001. "Gaussian estimation of parametric spectral density with unknown pole," LSE Research Online Documents on Economics 2182, London School of Economics and Political Science, LSE Library.
    9. Liudas Giraitis & Javier Hidalgo & Peter M Robinson, 2001. "Gaussian Estimation of Parametric Spectral Density with Unknown Pole," STICERD - Econometrics Paper Series 424, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    10. Henry L. Gray & Nien‐Fan Zhang & Wayne A. Woodward, 1989. "On Generalized Fractional Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(3), pages 233-257, May.
    11. Remigijus Leipus & Marie‐Claude Viano, 2000. "Modelling Long‐memory Time Series with Finite or Infinite Variance: a General Approach," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 61-74, January.
    12. Robinson, Peter M. & Velasco, Carlos, 2000. "Whittle pseudo-maximum likelihood estimation for nonstationary time series," LSE Research Online Documents on Economics 2273, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laurent Ferrara & Dominique Guégan, 2008. "Business surveys modelling with Seasonal-Cyclical Long Memory models," Economics Bulletin, AccessEcon, vol. 3(29), pages 1-10.
    2. Reisen, Valdério A. & Zamprogno, Bartolomeu & Palma, Wilfredo & Arteche, Josu, 2014. "A semiparametric approach to estimate two seasonal fractional parameters in the SARFIMA model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 98(C), pages 1-17.
    3. Reisen, Valdério Anselmo & Monte, Edson Zambon & da Conceição Franco, Glaura & Sgrancio, Adriano Marcio & Molinares, Fábio Alexander Fajardo & Bondon, Pascal & Ziegelmann, Flávio Augusto & Abraham, Bo, 2018. "Robust estimation of fractional seasonal processes: Modeling and forecasting daily average SO2 concentrations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 146(C), pages 27-43.
    4. Proietti, Tommaso & Maddanu, Federico, 2024. "Modelling cycles in climate series: The fractional sinusoidal waveform process," Journal of Econometrics, Elsevier, vol. 239(1).
    5. Henghsiu Tsai & Heiko Rachinger & Edward M.H. Lin, 2015. "Inference of Seasonal Long-memory Time Series with Measurement Error," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 137-154, March.
    6. repec:ebl:ecbull:v:3:y:2008:i:29:p:1-10 is not listed on IDEAS
    7. Richard Hunt & Shelton Peiris & Neville Weber, 2022. "Estimation methods for stationary Gegenbauer processes," Statistical Papers, Springer, vol. 63(6), pages 1707-1741, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Proietti, Tommaso & Maddanu, Federico, 2024. "Modelling cycles in climate series: The fractional sinusoidal waveform process," Journal of Econometrics, Elsevier, vol. 239(1).
    2. Federico Maddanu, 2022. "A harmonically weighted filter for cyclical long memory processes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(1), pages 49-78, March.
    3. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    4. Richard Hunt & Shelton Peiris & Neville Weber, 2022. "Estimation methods for stationary Gegenbauer processes," Statistical Papers, Springer, vol. 63(6), pages 1707-1741, December.
    5. Beaumont, Paul & Smallwood, Aaron, 2019. "Inference for likelihood-based estimators of generalized long-memory processes," MPRA Paper 96313, University Library of Munich, Germany.
    6. Ould Haye, Mohamedou & Philippe, Anne, 2011. "Marginal density estimation for linear processes with cyclical long memory," Statistics & Probability Letters, Elsevier, vol. 81(9), pages 1354-1364, September.
    7. McCoy, E. J. & Stephens, D. A., 2004. "Bayesian time series analysis of periodic behaviour and spectral structure," International Journal of Forecasting, Elsevier, vol. 20(4), pages 713-730.
    8. Guglielmo Maria Caporale & Juncal Cuñado & Luis A. Gil-Alana, 2013. "Modelling long-run trends and cycles in financial time series data," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 405-421, May.
    9. Rosa Espejo & Nikolai Leonenko & Andriy Olenko & María Ruiz-Medina, 2015. "On a class of minimum contrast estimators for Gegenbauer random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 657-680, December.
    10. Beaumont, Paul & Smallwood, Aaron, 2019. "Conditional Sum of Squares Estimation of Multiple Frequency Long Memory Models," MPRA Paper 96314, University Library of Munich, Germany.
    11. Gil-Alana, Luis A. & Aye, Goodness C. & Gupta, Rangan, 2015. "Trends and cycles in historical gold and silver prices," Journal of International Money and Finance, Elsevier, vol. 58(C), pages 98-109.
    12. Voges, Michelle & Sibbertsen, Philipp, 2021. "Cyclical fractional cointegration," Econometrics and Statistics, Elsevier, vol. 19(C), pages 114-129.
    13. Violetta Dalla & Javier Hidalgo, 2005. "A Parametric Bootstrap Test for Cycles," STICERD - Econometrics Paper Series 486, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    14. Kouamé, Euloge F. & Hili, Ouagnina, 2008. "Minimum distance estimation of k-factors GARMA processes," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3254-3261, December.
    15. Hassler, Uwe, 2011. "Estimation of fractional integration under temporal aggregation," Journal of Econometrics, Elsevier, vol. 162(2), pages 240-247, June.
    16. Javier Hidalgo & Philippe Soulier, 2004. "Estimation of the location and exponent of the spectral singularity of a long memory process," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(1), pages 55-81, January.
    17. Alex Gonzaga & Michael Hauser, 2011. "A wavelet Whittle estimator of generalized long-memory stochastic volatility," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(1), pages 23-48, March.
    18. Hidalgo, Javier, 2005. "Semiparametric estimation for stationary processes whose spectra have an unknown pole," LSE Research Online Documents on Economics 6842, London School of Economics and Political Science, LSE Library.
    19. Javier Hidalgo, 2005. "Semiparametric Estimation for Stationary Processes whose Spectra have an Unknown Pole," STICERD - Econometrics Paper Series 481, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    20. repec:hal:journl:peer-00815563 is not listed on IDEAS
    21. Giovanni Caggiano & Efrem Castelnuovo, 2008. "Long Memory and Non-Linearities in International Inflation," "Marco Fanno" Working Papers 0076, Dipartimento di Scienze Economiche "Marco Fanno".

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:26:y:2005:i:6:p:863-892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.