IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v58y2017i1d10.1007_s00362-015-0687-x.html
   My bibliography  Save this article

Hypothesis test on response mean with inequality constraints under data missing when covariables are present

Author

Listed:
  • Hong-Xia Xu

    (Zhejiang Gongshang University
    Anhui Polytechnic University)

  • Guo-Liang Fan

    (Anhui Polytechnic University)

  • Han-Ying Liang

    (Tongji University)

Abstract

This paper addresses the problem of hypothesis test on response mean with various inequality constraints in the presence of covariates when response data are missing at random. The various hypotheses include to test single point, two points, set of inequalities as well as two-sided set of inequalities of the response mean. The test statistics is constructed by the weighted-corrected empirical likelihood function of the response mean based on the approach of weighted-corrected imputation for the response variable. We investigate limiting distributions and asymptotic powers of the proposed empirical likelihood ratio test statistics with auxiliary information. The results show that the test statistics with auxiliary information is more efficient than that without auxiliary information. A simulation study is undertaken to investigate the finite sample performance of the proposed method.

Suggested Citation

  • Hong-Xia Xu & Guo-Liang Fan & Han-Ying Liang, 2017. "Hypothesis test on response mean with inequality constraints under data missing when covariables are present," Statistical Papers, Springer, vol. 58(1), pages 53-75, March.
  • Handle: RePEc:spr:stpapr:v:58:y:2017:i:1:d:10.1007_s00362-015-0687-x
    DOI: 10.1007/s00362-015-0687-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-015-0687-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-015-0687-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang H. & Wang S. & Robins J.M. & Carroll R.J., 2004. "Estimation in Partially Linear Models With Missing Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 357-367, January.
    2. Liugen Xue, 2009. "Empirical Likelihood Confidence Intervals for Response Mean with Data Missing at Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 671-685, December.
    3. Qin, Yongsong & Rao, J.N.K. & Ren, Qunshu, 2008. "Confidence intervals for marginal parameters under fractional linear regression imputation for missing data," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1232-1259, July.
    4. Cheng Yong Tang & Yongsong Qin, 2012. "An efficient empirical likelihood approach for estimating equations with missing data," Biometrika, Biometrika Trust, vol. 99(4), pages 1001-1007.
    5. Zhao, Hui & Zhao, Pu-Ying & Tang, Nian-Sheng, 2013. "Empirical likelihood inference for mean functionals with nonignorably missing response data," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 101-116.
    6. Guo-Liang Fan & Han-Ying Liang & Jiang-Feng Wang, 2013. "Empirical likelihood for heteroscedastic partially linear errors-in-variables model with α-mixing errors," Statistical Papers, Springer, vol. 54(1), pages 85-112, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Hong-Xia & Fan, Guo-Liang & Chen, Zhen-Long, 2017. "Hypothesis tests in partial linear errors-in-variables models with missing response," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 219-229.
    2. Yu-Ye Zou & Han-Ying Liang, 2020. "CLT for integrated square error of density estimators with censoring indicators missing at random," Statistical Papers, Springer, vol. 61(6), pages 2685-2714, December.
    3. Ash Abebe & Huybrechts F. Bindele & Masego Otlaadisa & Boikanyo Makubate, 2021. "Robust estimation of single index models with responses missing at random," Statistical Papers, Springer, vol. 62(5), pages 2195-2225, October.
    4. Ana Pérez-González & Tomás R. Cotos-Yáñez & Wenceslao González-Manteiga & Rosa M. Crujeiras-Casais, 2021. "Goodness-of-fit tests for quantile regression with missing responses," Statistical Papers, Springer, vol. 62(3), pages 1231-1264, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuerong Chen & Alan T. K. Wan & Yong Zhou, 2015. "Efficient Quantile Regression Analysis With Missing Observations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 723-741, June.
    2. Xue, Liugen & Xue, Dong, 2011. "Empirical likelihood for semiparametric regression model with missing response data," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 723-740, April.
    3. Xue, Liugen & Zhang, Jinghua, 2020. "Empirical likelihood for partially linear single-index models with missing observations," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    4. Shuanghua Luo & Changlin Mei & Cheng-yi Zhang, 2017. "Smoothed empirical likelihood for quantile regression models with response data missing at random," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(1), pages 95-116, January.
    5. Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2017. "Generalized partially linear regression with misclassified data and an application to labour market transitions," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 145-159.
    6. Li Cai & Lijie Gu & Qihua Wang & Suojin Wang, 2021. "Simultaneous confidence bands for nonparametric regression with missing covariate data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1249-1279, December.
    7. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression and other z-estimation problems," CeMMAP working papers CWP74/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Tang, Niansheng & Wang, Wenjun, 2019. "Robust estimation of generalized estimating equations with finite mixture correlation matrices and missing covariates at random for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 640-655.
    9. Liang, Hua & Su, Haiyan & Zou, Guohua, 2008. "Confidence intervals for a common mean with missing data with applications in an AIDS study," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 546-553, December.
    10. Takuma Yoshida, 2019. "Two stage smoothing in additive models with missing covariates," Statistical Papers, Springer, vol. 60(6), pages 1803-1826, December.
    11. Lei Wang, 2019. "Dimension reduction for kernel-assisted M-estimators with missing response at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 889-910, August.
    12. Yangxin Huang & Tao Lu, 2017. "Bayesian inference on partially linear mixed-effects joint models for longitudinal data with multiple features," Computational Statistics, Springer, vol. 32(1), pages 179-196, March.
    13. Linjun Tang & Zhangong Zhou, 2015. "Weighted local linear CQR for varying-coefficient models with missing covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 583-604, September.
    14. Qin, Yongsong & Li, Ling & Lei, Qingzhu, 2009. "Empirical likelihood for linear regression models with missing responses," Statistics & Probability Letters, Elsevier, vol. 79(11), pages 1391-1396, June.
    15. Ai-Ai Liu & Han-Ying Liang, 2017. "Jackknife empirical likelihood of error variance in partially linear varying-coefficient errors-in-variables models," Statistical Papers, Springer, vol. 58(1), pages 95-122, March.
    16. Guoyou Qin & Zhongyi Zhu & Wing Fung, 2012. "Robust estimation of the generalised partial linear model with missing covariates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(2), pages 517-530.
    17. Guo, Xu & Song, Lianlian & Fang, Yun & Zhu, Lixing, 2019. "Model checking for general linear regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 1-12.
    18. Francesco Bravo, 2020. "Robust estimation and inference for general varying coefficient models with missing observations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 966-988, December.
    19. Jin Qiu & Lang Wu, 2015. "A moving blocks empirical likelihood method for longitudinal data," Biometrics, The International Biometric Society, vol. 71(3), pages 616-624, September.
    20. Dong, Yuexiao & Xia, Qi & Tang, Cheng Yong & Li, Zeda, 2018. "On sufficient dimension reduction with missing responses through estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 67-77.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:58:y:2017:i:1:d:10.1007_s00362-015-0687-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.