IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v24y2015i3p583-604.html
   My bibliography  Save this article

Weighted local linear CQR for varying-coefficient models with missing covariates

Author

Listed:
  • Linjun Tang
  • Zhangong Zhou

Abstract

This paper considers composite quantile regression (CQR) estimation and inference for varying-coefficient models with missing covariates. We propose the weighted local linear CQR (WLLCQR) estimators for unknown coefficient function when selection probabilities are known, estimated nonparametrically or parametrically. Theoretical and numerical results demonstrate that the WLLCQR estimators with estimating weights are more efficient than the true weights. Moreover, a goodness-of-fit test based on the WLLCQR fittings is developed to test whether the coefficient functions are actually varying. The finite-sample performance of the proposed methodology is assessed by simulation studies. A real data set is conducted to illustrate our proposed method. Copyright Sociedad de Estadística e Investigación Operativa 2015

Suggested Citation

  • Linjun Tang & Zhangong Zhou, 2015. "Weighted local linear CQR for varying-coefficient models with missing covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 583-604, September.
  • Handle: RePEc:spr:testjl:v:24:y:2015:i:3:p:583-604
    DOI: 10.1007/s11749-014-0425-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-014-0425-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-014-0425-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang H. & Wang S. & Robins J.M. & Carroll R.J., 2004. "Estimation in Partially Linear Models With Missing Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 357-367, January.
    2. R. L. Eubank & Chunfeng Huang & Y. Muñoz Maldonado & Naisyin Wang & Suojin Wang & R. J. Buchanan, 2004. "Smoothing spline estimation in varying‐coefficient models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 653-667, August.
    3. Cai, Zongwu & Fan, Jianqing & Yao, Qiwei, 2000. "Functional-coefficient regression models for nonlinear time series," LSE Research Online Documents on Economics 6314, London School of Economics and Political Science, LSE Library.
    4. Liang, Hua, 2008. "Generalized partially linear models with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 880-895, May.
    5. Chiang C-T. & Rice J. A & Wu C. O, 2001. "Smoothing Spline Estimation for Varying Coefficient Models With Repeatedly Measured Dependent Variables," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 605-619, June.
    6. Jianhua Z. Huang, 2002. "Varying-coefficient models and basis function approximations for the analysis of repeated measurements," Biometrika, Biometrika Trust, vol. 89(1), pages 111-128, March.
    7. Ning, Zijun & Tang, Linjun, 2014. "Estimation and test procedures for composite quantile regression with covariates missing at random," Statistics & Probability Letters, Elsevier, vol. 95(C), pages 15-25.
    8. Colin Wu & Kai Yu & Chin-Tsang Chiang, 2000. "A Two-Step Smoothing Method for Varying-Coefficient Models with Repeated Measurements," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(3), pages 519-543, September.
    9. Jiang, Rong & Qian, Weimin & Zhou, Zhangong, 2012. "Variable selection and coefficient estimation via composite quantile regression with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 308-317.
    10. Xue, Liugen, 2009. "Empirical likelihood for linear models with missing responses," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1353-1366, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Jin & Tiefeng Ma & Jiajia Dai & Shuangzhe Liu, 2021. "Penalized weighted composite quantile regression for partially linear varying coefficient models with missing covariates," Computational Statistics, Springer, vol. 36(1), pages 541-575, March.
    2. Bindele, Huybrechts F., 2018. "Covariates missing at random under signed-rank inference," Econometrics and Statistics, Elsevier, vol. 8(C), pages 78-93.
    3. Xiaohui Yuan & Yong Li & Xiaogang Dong & Tianqing Liu, 2022. "Optimal subsampling for composite quantile regression in big data," Statistical Papers, Springer, vol. 63(5), pages 1649-1676, October.
    4. Jing Sun, 2020. "An improvement on the efficiency of complete-case-analysis with nonignorable missing covariate data," Computational Statistics, Springer, vol. 35(4), pages 1621-1636, December.
    5. Fan, Guo-Liang & Xu, Hong-Xia & Liang, Han-Ying, 2019. "Dimension reduction estimation for central mean subspace with missing multivariate response," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    6. Puying Zhao & Hui Zhao & Niansheng Tang & Zhaohai Li, 2017. "Weighted composite quantile regression analysis for nonignorable missing data using nonresponse instrument," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 189-212, April.
    7. ChunJing Li & Yun Li & Xue Ding & XiaoGang Dong, 2020. "DGQR estimation for interval censored quantile regression with varying-coefficient models," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-17, November.
    8. Zhangong Zhou & Linjun Tang, 2019. "Testing for parametric component of partially linear models with missing covariates," Statistical Papers, Springer, vol. 60(3), pages 747-760, June.
    9. Rong Jiang & Mengxian Sun, 2022. "Single-index composite quantile regression for ultra-high-dimensional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 443-460, June.
    10. Sun, Jing & Sun, Qihang, 2015. "An improved and efficient estimation method for varying-coefficient model with missing covariates," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 296-303.
    11. Shen, Yu & Liang, Han-Ying, 2018. "Quantile regression for partially linear varying-coefficient model with censoring indicators missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 1-18.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Bravo, 2020. "Robust estimation and inference for general varying coefficient models with missing observations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 966-988, December.
    2. Li, XiaoLi & You, JinHong, 2012. "Error covariance matrix correction based approach to functional coefficient regression models with generated covariates," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 263-281.
    3. Lian, Heng, 2015. "Quantile regression for dynamic partially linear varying coefficient time series models," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 49-66.
    4. Ye, Mao & Lu, Zhao-Hua & Li, Yimei & Song, Xinyuan, 2019. "Finite mixture of varying coefficient model: Estimation and component selection," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 452-474.
    5. Wang, Qihua & Zhang, Riquan, 2009. "Statistical estimation in varying coefficient models with surrogate data and validation sampling," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2389-2405, November.
    6. Tang Qingguo & Cheng Longsheng, 2008. "M-estimation and B-spline approximation for varying coefficient models with longitudinal data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(7), pages 611-625.
    7. Qiu, Jia & Li, Degao & You, Jinhong, 2015. "SCAD-penalized regression for varying-coefficient models with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 100-118.
    8. Wang-Li Xu & Li-Xing Zhu, 2008. "Goodness-of-fit testing for varying-coefficient models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(2), pages 129-146, September.
    9. Yiqiang Lu & Riquan Zhang, 2009. "Smoothing spline estimation of generalised varying-coefficient mixed model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(7), pages 815-825.
    10. Liu, Hefei & Song, Xinyuan & Zhang, Baoxue, 2022. "Varying-coefficient hidden Markov models with zero-effect regions," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    11. Chin-Tsang Chiang, 2005. "Comparisons between simultaneous and componentwise splines for varying coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(4), pages 637-653, December.
    12. Zhaoping Hong & Yuao Hu & Heng Lian, 2013. "Variable selection for high-dimensional varying coefficient partially linear models via nonconcave penalty," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(7), pages 887-908, October.
    13. Yuan Yang & Ziyang Pan & Jian Kang & Chad Brummett & Yi Li, 2023. "Simultaneous selection and inference for varying coefficients with zero regions: a soft‐thresholding approach," Biometrics, The International Biometric Society, vol. 79(4), pages 3388-3401, December.
    14. Ghosal, Rahul & Maity, Arnab, 2022. "A Score Based Test for Functional Linear Concurrent Regression," Econometrics and Statistics, Elsevier, vol. 21(C), pages 114-130.
    15. Jun Jin & Tiefeng Ma & Jiajia Dai, 2021. "New efficient spline estimation for varying-coefficient models with two-step knot number selection," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 693-712, July.
    16. Rahul Ghosal & Arnab Maity & Timothy Clark & Stefano B. Longo, 2020. "Variable selection in functional linear concurrent regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 565-587, June.
    17. Wang, Qihua & Xue, Liugen, 2011. "Statistical inference in partially-varying-coefficient single-index model," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 1-19, January.
    18. Ning, Zijun & Tang, Linjun, 2014. "Estimation and test procedures for composite quantile regression with covariates missing at random," Statistics & Probability Letters, Elsevier, vol. 95(C), pages 15-25.
    19. Xue, Liugen & Zhang, Jinghua, 2020. "Empirical likelihood for partially linear single-index models with missing observations," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    20. Byeong U. Park & Enno Mammen & Young K. Lee & Eun Ryung Lee, 2015. "Varying Coefficient Regression Models: A Review and New Developments," International Statistical Review, International Statistical Institute, vol. 83(1), pages 36-64, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:24:y:2015:i:3:p:583-604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.