IDEAS home Printed from https://ideas.repec.org/p/azt/cemmap/74-13.html
   My bibliography  Save this paper

Uniform post selection inference for LAD regression and other z-estimation problems

Author

Listed:
  • Alexandre Belloni
  • Victor Chernozhukov
  • Kengo Kato

Abstract

We develop uniformly valid confidence regions for regression coefficients in a high-dimensional sparse least absolute deviation/median regression model. The setting is one where the number of regressors p could be large in comparison to the sample size n, but only s ≪ n of them are needed to accurately describe the regression function. Our new methods are based on the instrumental median regression estimator that assembles the optimal estimating equation from the output of the post ℓ1-penalized median regression and post ℓ1-penalized least squares in an auxiliary equation. The estimating equation is immunized against non-regular estimation of nuisance part of the median regression function, in the sense of Neyman. We establish that in a homoscedastic regression model, the instrumental median regression estimator of a single regression coefficient is asymptotically root-n normal uniformly with respect to the underlying sparse model. The resulting confidence regions are valid uniformly with respect to the underlying model. We illustrate the value of uniformity with Monte-Carlo experiments which demonstrate that standard/naive post-selection inference breaks down over large parts of the parameter space, and the proposed method does not. We then generalize our method to the case where p1 ≫ n regression coefficients are of interest in a non-smooth Z-estimation framework with approximately sparse nuisance functions, containing median regression with a single target regression coefficient as a very special case. We construct simultaneous confidence bands on all p1 coefficients, and establish their uniform validity over the underlying approximately sparse model.

Suggested Citation

  • Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression and other z-estimation problems," CeMMAP working papers 74/13, Institute for Fiscal Studies.
  • Handle: RePEc:azt:cemmap:74/13
    DOI: 10.1920/wp.cem.2013.7413
    as

    Download full text from publisher

    File URL: https://www.cemmap.ac.uk/wp-content/uploads/2020/08/CWP7413.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1920/wp.cem.2013.7413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lee, Sokbae, 2003. "Efficient Semiparametric Estimation Of A Partially Linear Quantile Regression Model," Econometric Theory, Cambridge University Press, vol. 19(1), pages 1-31, February.
    2. Joseph P. Romano & Michael Wolf, 2005. "Stepwise Multiple Testing as Formalized Data Snooping," Econometrica, Econometric Society, vol. 73(4), pages 1237-1282, July.
    3. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    4. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    5. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Robust inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers 70/13, Institute for Fiscal Studies.
    6. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    7. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
    8. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Fernández-Val, Iván, 2019. "Conditional quantile processes based on series or many regressors," Journal of Econometrics, Elsevier, vol. 213(1), pages 4-29.
    9. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximation of suprema of empirical processes," CeMMAP working papers CWP44/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Chernozhukov, Victor & Hansen, Christian, 2008. "Instrumental variable quantile regression: A robust inference approach," Journal of Econometrics, Elsevier, vol. 142(1), pages 379-398, January.
    11. He, Xuming & Shao, Qi-Man, 2000. "On Parameters of Increasing Dimensions," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 120-135, April.
    12. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    13. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    14. Leeb, Hannes & Potscher, Benedikt M., 2008. "Sparse estimators and the oracle property, or the return of Hodges' estimator," Journal of Econometrics, Elsevier, vol. 142(1), pages 201-211, January.
    15. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," Papers 1212.6906, arXiv.org, revised Jan 2018.
    16. Liang H. & Wang S. & Robins J.M. & Carroll R.J., 2004. "Estimation in Partially Linear Models With Missing Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 357-367, January.
    17. Wang, Lie, 2013. "The L1 penalized LAD estimator for high dimensional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 135-151.
    18. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    19. Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    2. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments," American Economic Review, American Economic Association, vol. 105(5), pages 486-490, May.
    3. Rahul Singh, 2021. "Kernel Ridge Riesz Representers: Generalization, Mis-specification, and the Counterfactual Effective Dimension," Papers 2102.11076, arXiv.org, revised Jul 2024.
    4. Matthew Backus & Sida Peng, 2019. "On Testing Continuity and the Detection of Failures," NBER Working Papers 26016, National Bureau of Economic Research, Inc.
    5. Victor Chernozhukov & Wolfgang K. Hardle & Chen Huang & Weining Wang, 2018. "LASSO-Driven Inference in Time and Space," Papers 1806.05081, arXiv.org, revised May 2020.
    6. Alexandre Belloni & Victor Chernozhukov & Abhishek Kaul, 2017. "Confidence bands for coefficients in high dimensional linear models with error-in-variables," CeMMAP working papers CWP22/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Jelena Bradic & Victor Chernozhukov & Whitney K. Newey & Yinchu Zhu, 2019. "Minimax Semiparametric Learning With Approximate Sparsity," Papers 1912.12213, arXiv.org, revised Aug 2022.
    8. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "High-Dimensional Methods and Inference on Structural and Treatment Effects," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
    9. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    10. Yanqin Fan & Fang Han & Wei Li & Xiao-Hua Zhou, 2019. "On rank estimators in increasing dimensions," Papers 1908.05255, arXiv.org.
    11. Chen, Le-Yu & Lee, Sokbae, 2023. "Sparse quantile regression," Journal of Econometrics, Elsevier, vol. 235(2), pages 2195-2217.
    12. Doğan, Osman & Taşpınar, Süleyman & Bera, Anil K., 2021. "A Bayesian robust chi-squared test for testing simple hypotheses," Journal of Econometrics, Elsevier, vol. 222(2), pages 933-958.
    13. Alexandre Belloni & Victor Chernozhukov & Lie Wang, 2013. "Pivotal estimation via square-root lasso in nonparametric regression," CeMMAP working papers 62/13, Institute for Fiscal Studies.
    14. Jiaying Gu & Stanislav Volgushev, 2018. "Panel Data Quantile Regression with Grouped Fixed Effects," Papers 1801.05041, arXiv.org, revised Aug 2018.
    15. S Klaassen & J Kueck & M Spindler & V Chernozhukov, 2023. "Uniform inference in high-dimensional Gaussian graphical models," Biometrika, Biometrika Trust, vol. 110(1), pages 51-68.
    16. Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2016. "Post-Selection Inference for Generalized Linear Models With Many Controls," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 606-619, October.
    17. Yuya Sasaki & Takuya Ura & Yichong Zhang, 2022. "Unconditional quantile regression with high‐dimensional data," Quantitative Economics, Econometric Society, vol. 13(3), pages 955-978, July.
    18. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Valid Post-Selection and Post-Regularization Inference: An Elementary, General Approach," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 649-688, August.
    19. Fan, Yanqin & Han, Fang & Li, Wei & Zhou, Xiao-Hua, 2020. "On rank estimators in increasing dimensions," Journal of Econometrics, Elsevier, vol. 214(2), pages 379-412.
    20. Zhentao Shi & Jingyi Huang, 2019. "Forward-Selected Panel Data Approach for Program Evaluation," Papers 1908.05894, arXiv.org, revised Apr 2021.
    21. Victor Chernozhukov & Chris Hansen & Martin Spindler, 2016. "High-Dimensional Metrics in R," Papers 1603.01700, arXiv.org, revised Aug 2016.
    22. Victor Chernozhukov & Whitney Newey & Rahul Singh & Vasilis Syrgkanis, 2020. "Adversarial Estimation of Riesz Representers," Papers 2101.00009, arXiv.org, revised Apr 2024.
    23. Victor Chernozhukov & Whitney K. Newey & Rahul Singh, 2022. "Automatic Debiased Machine Learning of Causal and Structural Effects," Econometrica, Econometric Society, vol. 90(3), pages 967-1027, May.
    24. Sven Klaassen & Jannis Kueck & Martin Spindler, 2017. "Transformation Models in High-Dimensions," Papers 1712.07364, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    2. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression models," CeMMAP working papers CWP24/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2016. "Post-Selection Inference for Generalized Linear Models With Many Controls," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 606-619, October.
    4. Alexandre Belloni & Mingli Chen & Victor Chernozhukov, 2016. "Quantile Graphical Models: Prediction and Conditional Independence with Applications to Systemic Risk," Papers 1607.00286, arXiv.org, revised Oct 2019.
    5. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers 49/16, Institute for Fiscal Studies.
    7. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    8. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Robust inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers 70/13, Institute for Fiscal Studies.
    9. Belloni, Alexandre & Chen, Mingli & Chernozhukov, Victor, 2016. "Quantile Graphical Models : Prediction and Conditional Independence with Applications to Financial Risk Management," Economic Research Papers 269321, University of Warwick - Department of Economics.
    10. Adamek, Robert & Smeekes, Stephan & Wilms, Ines, 2023. "Lasso inference for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 235(2), pages 1114-1143.
    11. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments," American Economic Review, American Economic Association, vol. 105(5), pages 486-490, May.
    12. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    13. Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
    14. Timothy B. Armstrong & Michal Kolesár & Soonwoo Kwon, 2020. "Bias-Aware Inference in Regularized Regression Models," Working Papers 2020-2, Princeton University. Economics Department..
    15. Caner, Mehmet & Kock, Anders Bredahl, 2018. "Asymptotically honest confidence regions for high dimensional parameters by the desparsified conservative Lasso," Journal of Econometrics, Elsevier, vol. 203(1), pages 143-168.
    16. Kaspar Wuthrich & Ying Zhu, 2019. "Omitted variable bias of Lasso-based inference methods: A finite sample analysis," Papers 1903.08704, arXiv.org, revised Sep 2021.
    17. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    18. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
    19. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
    20. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:azt:cemmap:74/13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dermot Watson (email available below). General contact details of provider: https://edirc.repec.org/data/ifsssuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.