IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v58y2017i1d10.1007_s00362-015-0689-8.html
   My bibliography  Save this article

Jackknife empirical likelihood of error variance in partially linear varying-coefficient errors-in-variables models

Author

Listed:
  • Ai-Ai Liu

    (Tongji University)

  • Han-Ying Liang

    (Tongji University)

Abstract

For the partially linear varying-coefficient model when the parametric covariates are measured with additive errors, the estimator of the error variance is defined based on residuals of the model. At the same time, we construct Jackknife estimator as well as Jackknife empirical likelihood statistic of the error variance. Under both the response variables and their associated covariates form a stationary $$\alpha $$ α -mixing sequence, we prove that the proposed estimators and Jackknife empirical likelihood statistic are asymptotic normality and asymptotic $$\chi ^2$$ χ 2 distribution, respectively. Numerical simulations are carried out to assess the performance of the proposed method.

Suggested Citation

  • Ai-Ai Liu & Han-Ying Liang, 2017. "Jackknife empirical likelihood of error variance in partially linear varying-coefficient errors-in-variables models," Statistical Papers, Springer, vol. 58(1), pages 95-122, March.
  • Handle: RePEc:spr:stpapr:v:58:y:2017:i:1:d:10.1007_s00362-015-0689-8
    DOI: 10.1007/s00362-015-0689-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-015-0689-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-015-0689-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu Miao & Fangfang Zhao & Ke Wang & Yanping Chen, 2013. "Asymptotic normality and strong consistency of LS estimators in the EV regression model with NA errors," Statistical Papers, Springer, vol. 54(1), pages 193-206, February.
    2. Jing, Bing-Yi & Yuan, Junqing & Zhou, Wang, 2009. "Jackknife Empirical Likelihood," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1224-1232.
    3. Francesco Bravo, 2014. "Varying coefficients partially linear models with randomly censored data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 383-412, April.
    4. Sanying Feng & Liugen Xue, 2014. "Bias-corrected statistical inference for partially linear varying coefficient errors-in-variables models with restricted condition," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 121-140, February.
    5. Xuemin Zi & Changliang Zou & Yukun Liu, 2012. "Two-sample empirical likelihood method for difference between coefficients in linear regression model," Statistical Papers, Springer, vol. 53(1), pages 83-93, February.
    6. You, Jinhong & Chen, Gemai, 2006. "Estimation of a semiparametric varying-coefficient partially linear errors-in-variables model," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 324-341, February.
    7. Huang, Zhensheng & Zhang, Riquan, 2009. "Empirical likelihood for nonparametric parts in semiparametric varying-coefficient partially linear models," Statistics & Probability Letters, Elsevier, vol. 79(16), pages 1798-1808, August.
    8. Gong, Yun & Peng, Liang & Qi, Yongcheng, 2010. "Smoothed jackknife empirical likelihood method for ROC curve," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1520-1531, July.
    9. Guo-Liang Fan & Han-Ying Liang & Jiang-Feng Wang, 2013. "Empirical likelihood for heteroscedastic partially linear errors-in-variables model with α-mixing errors," Statistical Papers, Springer, vol. 54(1), pages 85-112, February.
    10. Sukhbir Singh & Kanchan Jain & Suresh Sharma, 2014. "Replicated measurement error model under exact linear restrictions," Statistical Papers, Springer, vol. 55(2), pages 253-274, May.
    11. Xiuli Wang & Gaorong Li & Lu Lin, 2011. "Empirical likelihood inference for semi-parametric varying-coefficient partially linear EV models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(2), pages 171-185, March.
    12. Chuanhua Wei & Yubo Luo & Xizhi Wu, 2012. "Empirical likelihood for partially linear additive errors-in-variables models," Statistical Papers, Springer, vol. 53(2), pages 485-496, May.
    13. You, Jinhong & Zhou, Xian & Chen, Gemai, 2005. "Jackknifing in partially linear regression models with serially correlated errors," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 386-404, February.
    14. Liebscher E., 2001. "Estimation Of The Density And The Regression Function Under Mixing Conditions," Statistics & Risk Modeling, De Gruyter, vol. 19(1), pages 9-26, January.
    15. Liang Peng & Yongcheng Qi & Ingrid Van Keilegom, 2012. "Jackknife empirical likelihood method for copulas," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 74-92, March.
    16. Liang Peng & Yongcheng Qi, 2010. "Smoothed jackknife empirical likelihood method for tail copulas," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 514-536, November.
    17. Peng, Liang & Qi, Yongcheng & Van Keilegom, Ingrid, 2012. "Jackknife empirical likelihood method for copulas," LIDAM Reprints ISBA 2012013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Feng, Huijun & Peng, Liang, 2012. "Jackknife empirical likelihood tests for error distributions in regression models," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 63-75.
    19. Shao, Qi-Man, 1993. "Complete convergence for [alpha]-mixing sequences," Statistics & Probability Letters, Elsevier, vol. 16(4), pages 279-287, March.
    20. Haibo Zhou & Jinhong You & Bin Zhou, 2010. "Statistical inference for fixed-effects partially linear regression models with errors in variables," Statistical Papers, Springer, vol. 51(3), pages 629-650, September.
    21. You, Jinhong & Zhou, Yong, 2006. "Empirical likelihood for semiparametric varying-coefficient partially linear regression models," Statistics & Probability Letters, Elsevier, vol. 76(4), pages 412-422, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongcheng Qi, 2018. "Jackknife Empirical Likelihood Methods," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 7(2), pages 20-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhigang & Zhao, Yichuan, 2013. "Empirical likelihood for linear transformation models with interval-censored failure time data," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 398-409.
    2. Yukitoshi Matsushita & Taisuke Otsu, 2019. "Jackknife, small bandwidth and high-dimensional asymptotics," STICERD - Econometrics Paper Series 605, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    3. Yongcheng Qi, 2018. "Jackknife Empirical Likelihood Methods," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 7(2), pages 20-22, June.
    4. Fan, Guo-Liang & Liang, Han-Ying & Shen, Yu, 2016. "Penalized empirical likelihood for high-dimensional partially linear varying coefficient model with measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 183-201.
    5. Zhaoliang Wang & Liugen Xue & Gaorong Li & Fei Lu, 2019. "Spline estimator for ultra-high dimensional partially linear varying coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 657-677, June.
    6. Harold D. Chiang & Bing Yang Tan, 2020. "Empirical likelihood and uniform convergence rates for dyadic kernel density estimation," Papers 2010.08838, arXiv.org, revised May 2022.
    7. Yongli Sang & Xin Dang & Yichuan Zhao, 2020. "Depth-based weighted jackknife empirical likelihood for non-smooth U-structure equations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 573-598, June.
    8. Zhao, Yichuan & Meng, Xueping & Yang, Hanfang, 2015. "Jackknife empirical likelihood inference for the mean absolute deviation," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 92-101.
    9. Shen, Si-Lian & Cui, Jian-Ling & Mei, Chang-Lin & Wang, Chun-Wei, 2014. "Estimation and inference of semi-varying coefficient models with heteroscedastic errors," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 70-93.
    10. Hanfang Yang & Yichuan Zhao, 2017. "Smoothed jackknife empirical likelihood for the difference of two quantiles," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 1059-1073, October.
    11. Peixin Zhao & Liugen Xue, 2011. "Variable selection for varying coefficient models with measurement errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(2), pages 231-245, September.
    12. Zhao, Peixin & Xue, Liugen, 2010. "Variable selection for semiparametric varying coefficient partially linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1872-1883, September.
    13. Liu, Aiai & Hou, Yanxi & Peng, Liang, 2015. "Interval estimation for a measure of tail dependence," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 294-305.
    14. Zhang, Xiuzhen & Lu, Zhiping & Wang, Yangye & Zhang, Riquan, 2020. "Adjusted jackknife empirical likelihood for stationary ARMA and ARFIMA models," Statistics & Probability Letters, Elsevier, vol. 165(C).
    15. Yang Wei & Zhouping Li & Yunqiu Dai, 2022. "Unified smoothed jackknife empirical likelihood tests for comparing income inequality indices," Statistical Papers, Springer, vol. 63(5), pages 1415-1475, October.
    16. Yang, Hanfang & Zhao, Yichuan, 2013. "Smoothed jackknife empirical likelihood inference for the difference of ROC curves," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 270-284.
    17. Yang, Hanfang & Zhao, Yichuan, 2015. "Smoothed jackknife empirical likelihood inference for ROC curves with missing data," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 123-138.
    18. Yan-Ting Xiao & Fu-Xiao Li, 2020. "Estimation in partially linear varying-coefficient errors-in-variables models with missing response variables," Computational Statistics, Springer, vol. 35(4), pages 1637-1658, December.
    19. Yang, Hanfang & Zhao, Yichuan, 2018. "Smoothed jackknife empirical likelihood for the one-sample difference of quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 58-69.
    20. Yang, Yiping & Li, Gaorong & Peng, Heng, 2014. "Empirical likelihood of varying coefficient errors-in-variables models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 1-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:58:y:2017:i:1:d:10.1007_s00362-015-0689-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.