IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v7y2024i3p56-943d1468558.html
   My bibliography  Save this article

Doubly Robust Estimation and Semiparametric Efficiency in Generalized Partially Linear Models with Missing Outcomes

Author

Listed:
  • Lu Wang

    (Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA)

  • Zhongzhe Ouyang

    (Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA)

  • Xihong Lin

    (Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA)

Abstract

We investigate a semiparametric generalized partially linear regression model that accommodates missing outcomes, with some covariates modeled parametrically and others nonparametrically. We propose a class of augmented inverse probability weighted (AIPW) kernel–profile estimating equations. The nonparametric component is estimated using AIPW kernel estimating equations, while parametric regression coefficients are estimated using AIPW profile estimating equations. We demonstrate the doubly robust nature of the AIPW estimators for both nonparametric and parametric components. Specifically, these estimators remain consistent if either the assumed model for the probability of missing data or that for the conditional mean of the outcome, given covariates and auxiliary variables, is correctly specified, though not necessarily both simultaneously. Additionally, the AIPW profile estimator for parametric regression coefficients is consistent and asymptotically normal under the semiparametric model defined by the generalized partially linear model on complete data, assuming that the missing data mechanism is missing at random. When both working models are correctly specified, this estimator achieves semiparametric efficiency, with its asymptotic variance reaching the efficiency bound. We validate our approach through simulations to assess the finite sample performance of the proposed estimators and apply the method to a study that investigates risk factors associated with myocardial ischemia.

Suggested Citation

  • Lu Wang & Zhongzhe Ouyang & Xihong Lin, 2024. "Doubly Robust Estimation and Semiparametric Efficiency in Generalized Partially Linear Models with Missing Outcomes," Stats, MDPI, vol. 7(3), pages 1-20, August.
  • Handle: RePEc:gam:jstats:v:7:y:2024:i:3:p:56-943:d:1468558
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/7/3/56/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/7/3/56/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tao Hu & Hengjian Cui, 2010. "Robust estimates in generalised varying-coefficient partially linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(6), pages 737-754.
    2. Song Chen & Ingrid Van Keilegom, 2013. "Estimation in semiparametric models with missing data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 785-805, August.
    3. Liang H. & Wang S. & Robins J.M. & Carroll R.J., 2004. "Estimation in Partially Linear Models With Missing Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 357-367, January.
    4. Naisyin Wang & Raymond J. Carroll & Xihong Lin, 2005. "Efficient Semiparametric Marginal Estimation for Longitudinal/Clustered Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 147-157, March.
    5. Qi-Hua Wang, 2009. "Statistical estimation in partial linear models with covariate data missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 47-84, March.
    6. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    7. Lin X. & Carroll R. J., 2001. "Semiparametric Regression for Clustered Data Using Generalized Estimating Equations," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1045-1056, September.
    8. Rotnitzky, Andrea & Holcroft, Christina A. & Robins, James M., 1997. "Efficiency Comparisons in Multivariate Multiple Regression with Missing Outcomes," Journal of Multivariate Analysis, Elsevier, vol. 61(1), pages 102-128, April.
    9. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    10. Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
    11. Hua Liang & Suojin Wang & Raymond J. Carroll, 2007. "Partially linear models with missing response variables and error-prone covariates," Biometrika, Biometrika Trust, vol. 94(1), pages 185-198.
    12. Jafer Rahman & Shihua Luo & Yawen Fan & Xiaohui Liu, 2020. "Semiparametric efficient inferences for generalised partially linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 32(3), pages 704-724, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue, Liugen & Xue, Dong, 2011. "Empirical likelihood for semiparametric regression model with missing response data," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 723-740, April.
    2. M. Hristache & V. Patilea, 2017. "Conditional moment models with data missing at random," Biometrika, Biometrika Trust, vol. 104(3), pages 735-742.
    3. Wangli Xu & Xu Guo, 2013. "Checking the adequacy of partial linear models with missing covariates at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 473-490, June.
    4. Baojiang Chen & Xiao-Hua Zhou, 2013. "Generalized Partially Linear Models for Incomplete Longitudinal Data In the Presence of Population-Level Information," Biometrics, The International Biometric Society, vol. 69(2), pages 386-395, June.
    5. Chen, Ziqi & Shi, Ning-Zhong & Gao, Wei & Tang, Man-Lai, 2011. "Efficient semiparametric estimation via Cholesky decomposition for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3344-3354, December.
    6. Xiaohui Liu & Zhizhong Wang & Xuemei Hu, 2011. "Testing heteroscedasticity in partially linear models with missing covariates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 321-337.
    7. Xue, Liugen & Zhang, Jinghua, 2020. "Empirical likelihood for partially linear single-index models with missing observations," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    8. Zhangong Zhou & Linjun Tang, 2019. "Testing for parametric component of partially linear models with missing covariates," Statistical Papers, Springer, vol. 60(3), pages 747-760, June.
    9. Bryan S. Graham & Cristine Campos De Xavier Pinto & Daniel Egel, 2012. "Inverse Probability Tilting for Moment Condition Models with Missing Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 1053-1079.
    10. Yi, Grace Y. & He, Wenqing & Liang, Hua, 2009. "Analysis of correlated binary data under partially linear single-index logistic models," Journal of Multivariate Analysis, Elsevier, vol. 100(2), pages 278-290, February.
    11. Grace Yi & Wenqing He & Hua Liang, 2011. "Semiparametric marginal and association regression methods for clustered binary data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(3), pages 511-533, June.
    12. Nian-Sheng Tang & Pu-Ying Zhao, 2013. "Empirical likelihood semiparametric nonlinear regression analysis for longitudinal data with responses missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 639-665, August.
    13. Ana M. Bianco & Graciela Boente & Wenceslao González-Manteiga & Ana Pérez-González, 2019. "Plug-in marginal estimation under a general regression model with missing responses and covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 106-146, March.
    14. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    15. Yu Shen & Han-Ying Liang, 2018. "Quantile regression and its empirical likelihood with missing response at random," Statistical Papers, Springer, vol. 59(2), pages 685-707, June.
    16. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    17. Takahiro Hoshino & Yuya Shimizu, 2019. "Doubly Robust-type Estimation of Population Moments and Parameters in Biased Sampling," Keio-IES Discussion Paper Series 2019-006, Institute for Economics Studies, Keio University.
    18. Majid Mojirsheibani & Timothy Reese, 2017. "Kernel regression estimation for incomplete data with applications," Statistical Papers, Springer, vol. 58(1), pages 185-209, March.
    19. Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2017. "Generalized partially linear regression with misclassified data and an application to labour market transitions," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 145-159.
    20. Chen, Songxi, 2012. "Estimation in semiparametric models with missing data," MPRA Paper 46216, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:7:y:2024:i:3:p:56-943:d:1468558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.