IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v61y2020i6d10.1007_s00362-018-01065-9.html
   My bibliography  Save this article

CLT for integrated square error of density estimators with censoring indicators missing at random

Author

Listed:
  • Yu-Ye Zou

    (Shanghai Maritime University)

  • Han-Ying Liang

    (Tongji University)

Abstract

A popular stochastic measure of the distance between the density of the lifetimes and its estimator is the integrated square error (ISE) and Hellinger distance (HD). In this paper, we focus on the right-censored model when the censoring indicators are missing at random. Based on two density estimators defined by Wang et al.(J Multivar Anal 100:835–850, 2009), and another new kernel estimator of the density, we established the asymptotic normality of the ISE and HD for the proposed estimators. In addition, the uniformly strongly consistency of the new kernel estimator of the density is discussed. Also, a simulation study is conducted to compare finite-sample performance of the proposed estimators.

Suggested Citation

  • Yu-Ye Zou & Han-Ying Liang, 2020. "CLT for integrated square error of density estimators with censoring indicators missing at random," Statistical Papers, Springer, vol. 61(6), pages 2685-2714, December.
  • Handle: RePEc:spr:stpapr:v:61:y:2020:i:6:d:10.1007_s00362-018-01065-9
    DOI: 10.1007/s00362-018-01065-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-018-01065-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-018-01065-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Satten G. A. & Datta S., 2001. "The Kaplan-Meier Estimator as an Inverse-Probability-of-Censoring Weighted Average," The American Statistician, American Statistical Association, vol. 55, pages 207-210, August.
    2. Tenreiro, Carlos, 2001. "On the asymptotic behaviour of the integrated square error of kernel density estimators with data-dependent bandwidth," Statistics & Probability Letters, Elsevier, vol. 53(3), pages 283-292, June.
    3. Han-Ying Liang & Jong-Il Baek, 2016. "Asymptotic normality of conditional density estimation with left-truncated and dependent data," Statistical Papers, Springer, vol. 57(1), pages 1-20, March.
    4. Liang, Han-Ying & Liu, Ai-Ai, 2013. "Kernel estimation of conditional density with truncated, censored and dependent data," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 40-58.
    5. Shuanghua Luo & Cheng-yi Zhang, 2016. "Nonparametric $$M$$ M -type regression estimation under missing response data," Statistical Papers, Springer, vol. 57(3), pages 641-664, September.
    6. Hu Yang & Huilan Liu, 2016. "Penalized weighted composite quantile estimators with missing covariates," Statistical Papers, Springer, vol. 57(1), pages 69-88, March.
    7. Wang, Qihua & Liu, Wei & Liu, Chunling, 2009. "Probability density estimation for survival data with censoring indicators missing at random," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 835-850, May.
    8. Jiang, Xuejun & Li, Jingzhi & Xia, Tian & Yan, Wanfeng, 2016. "Robust and efficient estimation with weighted composite quantile regression," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 413-423.
    9. R. Zamini & V. Fakoor & M. Sarmad, 2015. "On estimation of a density function in multiplicative censoring," Statistical Papers, Springer, vol. 56(3), pages 661-676, August.
    10. Yu-Ye Zou & Han-Ying Liang & Jing-Jing Zhang, 2015. "Nonlinear wavelet density estimation with data missing at random when covariates are present," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(8), pages 967-995, November.
    11. Hong-Xia Xu & Guo-Liang Fan & Han-Ying Liang, 2017. "Hypothesis test on response mean with inequality constraints under data missing when covariables are present," Statistical Papers, Springer, vol. 58(1), pages 53-75, March.
    12. O. Chatrabgoun & G. Parham & R. Chinipardaz, 2017. "A Legendre multiwavelets approach to copula density estimation," Statistical Papers, Springer, vol. 58(3), pages 673-690, September.
    13. Thuy Tuong Nguyen & Yury Tsoy, 2017. "A kernel PLS based classification method with missing data handling," Statistical Papers, Springer, vol. 58(1), pages 211-225, March.
    14. Hall, Peter, 1984. "Central limit theorem for integrated square error of multivariate nonparametric density estimators," Journal of Multivariate Analysis, Elsevier, vol. 14(1), pages 1-16, February.
    15. Zhang, Biao, 1998. "A note on the integrated square errors of kernel density estimators under random censorship," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 225-234, July.
    16. N. Hosseinioun & H. Doosti & H. Nirumand, 2012. "Nonparametric estimation of the derivatives of a density by the method of wavelet for mixing sequences," Statistical Papers, Springer, vol. 53(1), pages 195-203, February.
    17. Wanrong Liu & Xuewen Lu, 2011. "Empirical likelihood for density-weighted average derivatives," Statistical Papers, Springer, vol. 52(2), pages 391-412, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan Sharghi Ghale-Joogh & S. Mohammad E. Hosseini-Nasab, 2021. "On mean derivative estimation of longitudinal and functional data: from sparse to dense," Statistical Papers, Springer, vol. 62(4), pages 2047-2066, August.
    2. Ash Abebe & Huybrechts F. Bindele & Masego Otlaadisa & Boikanyo Makubate, 2021. "Robust estimation of single index models with responses missing at random," Statistical Papers, Springer, vol. 62(5), pages 2195-2225, October.
    3. Xu, Hong-Xia & Fan, Guo-Liang & Chen, Zhen-Long, 2017. "Hypothesis tests in partial linear errors-in-variables models with missing response," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 219-229.
    4. Tenreiro, Carlos, 2003. "On the asymptotic normality of multistage integrated density derivatives kernel estimators," Statistics & Probability Letters, Elsevier, vol. 64(3), pages 311-322, September.
    5. Hong-Xia Xu & Zhen-Long Chen & Jiang-Feng Wang & Guo-Liang Fan, 2019. "Quantile regression and variable selection for partially linear model with randomly truncated data," Statistical Papers, Springer, vol. 60(4), pages 1137-1160, August.
    6. Carlos Tenreiro, 2022. "On automatic kernel density estimate-based tests for goodness-of-fit," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 717-748, September.
    7. Adriano Zanin Zambom & Gregory J. Matthews, 2021. "Sure independence screening in the presence of missing data," Statistical Papers, Springer, vol. 62(2), pages 817-845, April.
    8. Hong-Xia Xu & Guo-Liang Fan & Zhen-Long Chen & Jiang-Feng Wang, 2018. "Weighted quantile regression and testing for varying-coefficient models with randomly truncated data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(4), pages 565-588, October.
    9. Tianqing Liu & Xiaohui Yuan, 2020. "Empirical likelihood-based weighted rank regression with missing covariates," Statistical Papers, Springer, vol. 61(2), pages 697-725, April.
    10. Han-Ying Liang & Jong-Il Baek, 2016. "Asymptotic normality of conditional density estimation with left-truncated and dependent data," Statistical Papers, Springer, vol. 57(1), pages 1-20, March.
    11. Fakoor, Vahid & Jomhoori, Sarah & Azarnoosh, Hasanali, 2009. "Asymptotic expansion for ISE of kernel density estimators under censored dependent model," Statistics & Probability Letters, Elsevier, vol. 79(17), pages 1809-1817, September.
    12. Marcelo Fernandes & Breno Neri, 2010. "Nonparametric Entropy-Based Tests of Independence Between Stochastic Processes," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 276-306.
    13. Su, Liangjun, 2006. "A simple test for multivariate conditional symmetry," Economics Letters, Elsevier, vol. 93(3), pages 374-378, December.
    14. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    15. Ali Al-Sharadqah & Majid Mojirsheibani & William Pouliot, 2020. "On the performance of weighted bootstrapped kernel deconvolution density estimators," Statistical Papers, Springer, vol. 61(4), pages 1773-1798, August.
    16. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    17. repec:ebl:ecbull:v:3:y:2005:i:11:p:1-10 is not listed on IDEAS
    18. Hoderlein, Stefan & Su, Liangjun & White, Halbert & Yang, Thomas Tao, 2016. "Testing for monotonicity in unobservables under unconfoundedness," Journal of Econometrics, Elsevier, vol. 193(1), pages 183-202.
    19. Liu, Bo & Mojirsheibani, Majid, 2015. "On a weighted bootstrap approximation of the Lp norms of kernel density estimators," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 65-73.
    20. Stefania D'Amico, 2004. "Density Estimation and Combination under Model Ambiguity," Computing in Economics and Finance 2004 273, Society for Computational Economics.
    21. Paula Saavedra-Nieves & Rosa M. Crujeiras, 2022. "Nonparametric estimation of directional highest density regions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 761-796, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:61:y:2020:i:6:d:10.1007_s00362-018-01065-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.