IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v21y2012i1p1-22.html
   My bibliography  Save this article

Modelling shelter choices in a class of mixture models for ordinal responses

Author

Listed:
  • Maria Iannario

Abstract

No abstract is available for this item.

Suggested Citation

  • Maria Iannario, 2012. "Modelling shelter choices in a class of mixture models for ordinal responses," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(1), pages 1-22, March.
  • Handle: RePEc:spr:stmapp:v:21:y:2012:i:1:p:1-22
    DOI: 10.1007/s10260-011-0176-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10260-011-0176-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10260-011-0176-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maria Iannario, 2010. "On the identifiability of a mixture model for ordinal data," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 87-94.
    2. D'Elia, Angela & Piccolo, Domenico, 2005. "A mixture model for preferences data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 917-934, June.
    3. Mullahy, John, 1986. "Specification and testing of some modified count data models," Journal of Econometrics, Elsevier, vol. 33(3), pages 341-365, December.
    4. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    5. Anders Skrondal & Sophia Rabe-Hesketh, 2003. "Multilevel logistic regression for polytomous data and rankings," Psychometrika, Springer;The Psychometric Society, vol. 68(2), pages 267-287, June.
    6. Daniel B. Hall, 2000. "Zero-Inflated Poisson and Binomial Regression with Random Effects: A Case Study," Biometrics, The International Biometric Society, vol. 56(4), pages 1030-1039, December.
    7. Marco Corazza & Florence Legros & Cira Perna & Marilena Sibillo, 2017. "Mathematical and Statistical Methods for Actuarial Sciences and Finance," Post-Print hal-01776135, HAL.
    8. Molenberghs, Geert & Verbeke, Geert, 2007. "Likelihood Ratio, Score, and Wald Tests in a Constrained Parameter Space," The American Statistician, American Statistical Association, vol. 61, pages 22-27, February.
    9. Manski, Charles F. & Molinari, Francesca, 2010. "Rounding Probabilistic Expectations in Surveys," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 219-231.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manisera, Marica & Zuccolotto, Paola, 2015. "Identifiability of a model for discrete frequency distributions with a multidimensional parameter space," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 302-316.
    2. Marcella Corduas & Alfonso Piscitelli, 2017. "Modeling university student satisfaction: the case of the humanities and social studies degree programs," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 617-628, March.
    3. Gennaro Punzo & Rosalia Castellano & Mirko Buonocore, 2018. "Job Satisfaction in the “Big Four” of Europe: Reasoning Between Feeling and Uncertainty Through CUB Models," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 139(1), pages 205-236, August.
    4. Capecchi, Stefania & Amato, Mario & Sodano, Valeria & Verneau, Fabio, 2019. "Understanding beliefs and concerns towards palm oil: Empirical evidence and policy implications," Food Policy, Elsevier, vol. 89(C).
    5. Simone, Rosaria & Tutz, Gerhard & Iannario, Maria, 2020. "Subjective heterogeneity in response attitude for multivariate ordinal outcomes," Econometrics and Statistics, Elsevier, vol. 14(C), pages 145-158.
    6. Stefania Capecchi & Maria Iannario, 2016. "Gini heterogeneity index for detecting uncertainty in ordinal data surveys," METRON, Springer;Sapienza Università di Roma, vol. 74(2), pages 223-232, August.
    7. Ryan H. L. Ip & K. Y. K. Wu, 2024. "A mixture distribution for modelling bivariate ordinal data," Statistical Papers, Springer, vol. 65(7), pages 4453-4488, September.
    8. Arboretti Giancristofaro, Rosa & Bordignon, Paolo, 2015. "Consumer preferences in food packaging: cub models and conjoint analysis," 143rd Joint EAAE/AAEA Seminar, March 25-27, 2015, Naples, Italy 202707, European Association of Agricultural Economists.
    9. Anna Gottard & Maria Iannario & Domenico Piccolo, 2016. "Varying uncertainty in CUB models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(2), pages 225-244, June.
    10. Stefania Capecchi & Maria Iannario & Rosaria Simone, 2018. "Well-Being and Relational Goods: A Model-Based Approach to Detect Significant Relationships," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(2), pages 729-750, January.
    11. Maurizio Carpita & Enrico Ciavolino & Mariangela Nitti, 2019. "The MIMIC–CUB Model for the Prediction of the Economic Public Opinions in Europe," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 287-305, November.
    12. Leonardo Grilli & Maria Iannario & Domenico Piccolo & Carla Rampichini, 2014. "Latent class CUB models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 105-119, March.
    13. E. Nardo & R. Simone, 2019. "A model-based fuzzy analysis of questionnaires," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 187-215, June.
    14. Stefania Capecchi & Domenico Piccolo, 2017. "Dealing with heterogeneity in ordinal responses," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(5), pages 2375-2393, September.
    15. Rosaria Simone, 2023. "Uncertainty Diagnostics of Binomial Regression Trees for Ordered Rating Data," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 79-105, April.
    16. Heng Xu & Nan Zhang, 2022. "From Contextualizing to Context Theorizing: Assessing Context Effects in Privacy Research," Management Science, INFORMS, vol. 68(10), pages 7383-7401, October.
    17. Manisera, Marica & Zuccolotto, Paola, 2014. "Modeling rating data with Nonlinear CUB models," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 100-118.
    18. Stefania Capecchi & Marta Meleddu & Manuela Pulina, 2019. "Quality evaluation and preferences of healthcare services: the case of telemedicine in Sardinia," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2339-2351, September.
    19. Maria Iannario & Anna Clara Monti & Domenico Piccolo, 2016. "Robustness issues for cub models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(4), pages 731-750, December.
    20. Maria Iannario & Marica Manisera & Domenico Piccolo & Paola Zuccolotto, 2012. "Sensory analysis in the food industry as a tool for marketing decisions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(4), pages 303-321, December.
    21. Manisera, Marica & Zuccolotto, Paola, 2022. "A mixture model for ordinal variables measured on semantic differential scales," Econometrics and Statistics, Elsevier, vol. 22(C), pages 98-123.
    22. Francesca Iorio & Riccardo Lucchetti & Rosaria Simone, 2024. "Testing distributional assumptions in CUB models for the analysis of rating data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(3), pages 669-701, September.
    23. Stefania Capecchi & Romina Gambacorta & Rosaria Simone & Domenico Piccolo, 2024. "Modelling cognitive response patterns to survey questions using the class of CUB models," Questioni di Economia e Finanza (Occasional Papers) 885, Bank of Italy, Economic Research and International Relations Area.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    2. Stefania Capecchi & Maria Iannario & Rosaria Simone, 2018. "Well-Being and Relational Goods: A Model-Based Approach to Detect Significant Relationships," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(2), pages 729-750, January.
    3. Stefania Capecchi & Domenico Piccolo, 2017. "Dealing with heterogeneity in ordinal responses," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(5), pages 2375-2393, September.
    4. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
    5. Di Ciommo, Floridea & Comendador, Julio & López-Lambas, María Eugenia & Cherchi, Elisabetta & Ortúzar, Juan de Dios, 2014. "Exploring the role of social capital influence variables on travel behaviour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 68(C), pages 46-55.
    6. Gennaro Punzo & Rosalia Castellano & Mirko Buonocore, 2018. "Job Satisfaction in the “Big Four” of Europe: Reasoning Between Feeling and Uncertainty Through CUB Models," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 139(1), pages 205-236, August.
    7. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    8. Lopera Baena, Maria Adelaida, 2016. "Evidence of Conditional and Unconditional Cooperation in a Public Goods Game: Experimental Evidence from Mali," VfS Annual Conference 2016 (Augsburg): Demographic Change 145797, Verein für Socialpolitik / German Economic Association.
    9. Massimiliano Bratti & Alfonso Miranda, 2010. "Endogenous Treatment Effects for Count Data Models with Sample Selection or Endogenous Participation," DoQSS Working Papers 10-05, Quantitative Social Science - UCL Social Research Institute, University College London, revised 10 Dec 2010.
    10. Manisera, Marica & Zuccolotto, Paola, 2014. "Modeling rating data with Nonlinear CUB models," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 100-118.
    11. Pamela Giustinelli, 2016. "Group Decision Making With Uncertain Outcomes: Unpacking Child–Parent Choice Of The High School Track," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 57(2), pages 573-602, May.
    12. Tousifur Rahman & Partha Jyoti Hazarika & M. Masoom Ali & Manash Pratim Barman, 2022. "Three-Inflated Poisson Distribution and its Application in Suicide Cases of India During Covid-19 Pandemic," Annals of Data Science, Springer, vol. 9(5), pages 1103-1127, October.
    13. Kettlewell, Nathan & Walker, Matthew J. & Yoo, Hong Il, 2024. "Alternative Models of Preference Heterogeneity for Elicited Choice Probabilities," IZA Discussion Papers 16821, Institute of Labor Economics (IZA).
    14. Cristian Roner & Claudia Di Caterina & Davide Ferrari, 2021. "Exponential Tilting for Zero-inflated Interval Regression with Applications to Cyber Security Survey Data," BEMPS - Bozen Economics & Management Paper Series BEMPS85, Faculty of Economics and Management at the Free University of Bozen.
    15. Massimiliano Bratti & Alfonso Miranda, 2011. "Endogenous treatment effects for count data models with endogenous participation or sample selection," Health Economics, John Wiley & Sons, Ltd., vol. 20(9), pages 1090-1109, September.
    16. Camila Pareja Yale & Hugo Tsugunobu Yoshida Yoshizaki & Luiz Paulo Fávero, 2022. "A New Zero-Inflated Negative Binomial Multilevel Model for Forecasting the Demand of Disaster Relief Supplies in the State of Sao Paulo, Brazil," Mathematics, MDPI, vol. 10(22), pages 1-11, November.
    17. Sasanka Adikari & Norou Diawara, 2024. "Utility in Time Description in Priority Best–Worst Discrete Choice Models: An Empirical Evaluation Using Flynn’s Data," Stats, MDPI, vol. 7(1), pages 1-18, February.
    18. Yves Breitmoser, 2021. "Controlling for presentation effects in choice," Quantitative Economics, Econometric Society, vol. 12(1), pages 251-281, January.
    19. Heiss, Florian & Hurd, Michael & van Rooij, Maarten & Rossmann, Tobias & Winter, Joachim, 2022. "Dynamics and heterogeneity of subjective stock market expectations," Journal of Econometrics, Elsevier, vol. 231(1), pages 213-231.
    20. de Bresser, Jochem & van Soest, Arthur, 2017. "The Predictive Power of Subjective Probability Questions," Discussion Paper 2017-046, Tilburg University, Center for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:21:y:2012:i:1:p:1-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.