IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v9y2022i5d10.1007_s40745-022-00372-1.html
   My bibliography  Save this article

Three-Inflated Poisson Distribution and its Application in Suicide Cases of India During Covid-19 Pandemic

Author

Listed:
  • Tousifur Rahman

    (Dibrugarh University)

  • Partha Jyoti Hazarika

    (Dibrugarh University)

  • M. Masoom Ali

    (Ball State University)

  • Manash Pratim Barman

    (Dibrugarh University)

Abstract

Inflated models are generally used whenever there is an excess number of frequencies at particular count. In this study, a three-inflated Poisson (ThIP) distribution is proposed by mixing the Poisson distribution and a distribution to a point mass at three. Some of its distribution properties and reliability characteristics are studied. A simulation study is carried out to see the performance of the MLEs. In India Covid-19 implications on mental health have been abysmal. Covid-19 related suicide data of India during lockdown to the first gradual relaxation of the terms of the total lockdown (unlocking 1.0) are used to examine the appropriateness of the proposed distribution. Likelihood ratio test is used for discriminating between Poisson and the proposed distribution.

Suggested Citation

  • Tousifur Rahman & Partha Jyoti Hazarika & M. Masoom Ali & Manash Pratim Barman, 2022. "Three-Inflated Poisson Distribution and its Application in Suicide Cases of India During Covid-19 Pandemic," Annals of Data Science, Springer, vol. 9(5), pages 1103-1127, October.
  • Handle: RePEc:spr:aodasc:v:9:y:2022:i:5:d:10.1007_s40745-022-00372-1
    DOI: 10.1007/s40745-022-00372-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-022-00372-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-022-00372-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mullahy, John, 1986. "Specification and testing of some modified count data models," Journal of Econometrics, Elsevier, vol. 33(3), pages 341-365, December.
    2. D. Böhning & E. Dietz & P. Schlattmann & L. Mendonça & U. Kirchner, 1999. "The zero‐inflated Poisson model and the decayed, missing and filled teeth index in dental epidemiology," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 162(2), pages 195-209.
    3. Mahaveer Golechha, 2020. "COVID-19, India, lockdown and psychosocial challenges: What next?," International Journal of Social Psychiatry, , vol. 66(8), pages 830-832, December.
    4. Martin Ridout & John Hinde & Clarice G. B. Demétrio, 2001. "A Score Test for Testing a Zero‐Inflated Poisson Regression Model Against Zero‐Inflated Negative Binomial Alternatives," Biometrics, The International Biometric Society, vol. 57(1), pages 219-223, March.
    5. Daniel B. Hall, 2000. "Zero-Inflated Poisson and Binomial Regression with Random Effects: A Case Study," Biometrics, The International Biometric Society, vol. 56(4), pages 1030-1039, December.
    6. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    7. K. F. Lam & Hongqi Xue & Yin Bun Cheung, 2006. "Semiparametric Analysis of Zero-Inflated Count Data," Biometrics, The International Biometric Society, vol. 62(4), pages 996-1003, December.
    8. Sanjay Kumar, 2020. "Monitoring Novel Corona Virus (COVID-19) Infections in India by Cluster Analysis," Annals of Data Science, Springer, vol. 7(3), pages 417-425, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbas Moghimbeigi & Mohammed Reza Eshraghian & Kazem Mohammad & Brian Mcardle, 2008. "Multilevel zero-inflated negative binomial regression modeling for over-dispersed count data with extra zeros," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(10), pages 1193-1202.
    2. Moghimbeigi, Abbas & Eshraghian, Mohammad Reza & Mohammad, Kazem & McArdle, Brian, 2009. "A score test for zero-inflation in multilevel count data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1239-1248, February.
    3. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    4. Livio Finos & Fortunato Pesarin, 2020. "On zero-inflated permutation testing and some related problems," Statistical Papers, Springer, vol. 61(5), pages 2157-2174, October.
    5. Aldo M. Garay & Victor H. Lachos & Heleno Bolfarine, 2015. "Bayesian estimation and case influence diagnostics for the zero-inflated negative binomial regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(6), pages 1148-1165, June.
    6. Jussiane Nader Gonçalves & Wagner Barreto-Souza, 2020. "Flexible regression models for counts with high-inflation of zeros," METRON, Springer;Sapienza Università di Roma, vol. 78(1), pages 71-95, April.
    7. A. Baccini & L. Barabesi & M. Cioni & C. Pisani, 2014. "Crossing the hurdle: the determinants of individual scientific performance," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 2035-2062, December.
    8. Feng, Jiarui & Zhu, Zhongyi, 2011. "Semiparametric analysis of longitudinal zero-inflated count data," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 61-72, January.
    9. Wei-Wen Hsu & David Todem & Kyungmann Kim, 2015. "Adjusted Supremum Score-Type Statistics for Evaluating Non-Standard Hypotheses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 746-759, September.
    10. Bae, S. & Famoye, F. & Wulu, J.T. & Bartolucci, A.A. & Singh, K.P., 2005. "A rich family of generalized Poisson regression models with applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 69(1), pages 4-11.
    11. David Todem & Wei-Wen Hsu & KyungMann Kim, 2012. "On the Efficiency of Score Tests for Homogeneity in Two-Component Parametric Models for Discrete Data," Biometrics, The International Biometric Society, vol. 68(3), pages 975-982, September.
    12. Garay, Aldo M. & Hashimoto, Elizabeth M. & Ortega, Edwin M.M. & Lachos, Víctor H., 2011. "On estimation and influence diagnostics for zero-inflated negative binomial regression models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1304-1318, March.
    13. Alberto Baccini & Lucio Barabesi & Martina Cioni & Caterina Pisani, 2013. "Crossing the hurdle: the determinants of individual scientific performance," Department of Economics University of Siena 691, Department of Economics, University of Siena.
    14. Lee, Keunbaik & Joo, Yongsung & Song, Joon Jin & Harper, Dee Wood, 2011. "Analysis of zero-inflated clustered count data: A marginalized model approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 824-837, January.
    15. Habtamu K. Benecha & Brian Neelon & Kimon Divaris & John S. Preisser, 2017. "Marginalized mixture models for count data from multiple source populations," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-17, December.
    16. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
    17. Das, Ujjwal & Das, Kalyan, 2018. "Inference on zero inflated ordinal models with semiparametric link," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 104-115.
    18. Niklas Elert, 2014. "What determines entry? Evidence from Sweden," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(1), pages 55-92, August.
    19. Yanlin Tang & Liya Xiang & Zhongyi Zhu, 2014. "Risk Factor Selection in Rate Making: EM Adaptive LASSO for Zero‐Inflated Poisson Regression Models," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1112-1127, June.
    20. Harald Oberhofer & Michael Pfaffermayr, 2014. "Two-Part Models for Fractional Responses Defined as Ratios of Integers," Econometrics, MDPI, vol. 2(3), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:9:y:2022:i:5:d:10.1007_s40745-022-00372-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.