IDEAS home Printed from https://ideas.repec.org/p/ste/nystbu/07-9.html
   My bibliography  Save this paper

Functional Form and Heterogeneity in Models for Count Data

Author

Listed:
  • William Greene

Abstract

This study presents several extensions of the most familiar models for count data, the Poisson and negative binomial models. We develop an encompassing model for two well-known variants of the negative binomial model (the NB1 and NB2 forms). We then analyze some alternative approaches to the standard log gamma model for introducing heterogeneity into the loglinear conditional means for these models. The lognormal model provides a versatile alternative specification that is more flexible (and more natural) than the log gamma form, and provides a platform for several "two part" extensions, including zero inflation, hurdle, and sample selection models. (We briefly present some alternative approaches to modeling heterogeneity.) We also resolve some features in Hausman, Hall and Griliches (1984, Economic models for count data with an application to the patents–R&D relationship, Econometrica 52 , 909–938) widely used panel data treatments for the Poisson and negative binomial models that appear to conflict with more familiar models of fixed and random effects. Finally, we consider a bivariate Poisson model that is also based on the lognormal heterogeneity model. Two recent applications have used this model. We suggest that the correlation estimated in their model frameworks is an ambiguous measure of the correlation of the variables of interest, and may substantially overstate it. We conclude with a detailed application of the proposed methods using the data employed in one of the two aforementioned bivariate Poisson studies.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • William Greene, 2007. "Functional Form and Heterogeneity in Models for Count Data," Working Papers 07-9, New York University, Leonard N. Stern School of Business, Department of Economics.
  • Handle: RePEc:ste:nystbu:07-9
    as

    Download full text from publisher

    File URL: http://w4.stern.nyu.edu/economics/docs/workingpapers/2007/greenefunctionalform.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Wang, Peiming & Cockburn, Iain M & Puterman, Martin L, 1998. "Analysis of Patent Data--A Mixed-Poisson-Regression-Model Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 27-41, January.
    2. Rainer Winkelmann, 2004. "Health care reform and the number of doctor visits-an econometric analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(4), pages 455-472.
    3. Paul Contoyannis & Andrew M. Jones & Nigel Rice, 2004. "The dynamics of health in the British Household Panel Survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(4), pages 473-503.
    4. Jung, Robert C & Winkelmann, Rainer, 1993. "Two Aspects of Labor Mobility: A Bivariate Poisson Regression Approach," Empirical Economics, Springer, vol. 18(3), pages 543-556.
    5. Winkelmann, Rainer & Zimmermann, Klaus F, 1995. "Recent Developments in Count Data Modelling: Theory and Application," Journal of Economic Surveys, Wiley Blackwell, vol. 9(1), pages 1-24, March.
    6. William H. Greene, 1997. "FIML Estimation of Sample Selection Models for Count Data," Working Papers 97-02, New York University, Leonard N. Stern School of Business, Department of Economics.
    7. Murat K. Munkin & Pravin K. Trivedi, 1999. "Simulated maximum likelihood estimation of multivariate mixed-Poisson regression models, with application," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 29-48.
    8. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    9. Joseph Hilbe, 1994. "Negative binomial regression," Stata Technical Bulletin, StataCorp LP, vol. 3(18).
    10. Andreas Million & Regina T. Riphahn & Achim Wambach, 2003. "Incentive effects in the demand for health care: a bivariate panel count data estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 387-405.
    11. Terza, Joseph V., 1998. "Estimating count data models with endogenous switching: Sample selection and endogenous treatment effects," Journal of Econometrics, Elsevier, vol. 84(1), pages 129-154, May.
    12. Cameron, A Colin & Trivedi, Pravin K, 1986. "Econometric Models Based on Count Data: Comparisons and Applications of Some Estimators and Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 1(1), pages 29-53, January.
    13. Freedman, David A., 2006. "On The So-Called "Huber-Sandwich Estimator" and "Robust Standard Errors"," The American Statistician, American Statistical Association, vol. 60, pages 299-302, November.
    14. Mullahy, John, 1986. "Specification and testing of some modified count data models," Journal of Econometrics, Elsevier, vol. 33(3), pages 341-365, December.
    15. Marcus Asplund & Rickard Sandin, 1999. "The Number of Firms and Production Capacity in Relation to Market Size," Journal of Industrial Economics, Wiley Blackwell, vol. 47(1), pages 69-85, March.
    16. Terza, Joseph V., 1985. "A Tobit-type estimator for the censored Poisson regression model," Economics Letters, Elsevier, vol. 18(4), pages 361-365.
    17. Cameron,A. Colin & Trivedi,Pravin K., 2005. "Microeconometrics," Cambridge Books, Cambridge University Press, number 9780521848053, September.
    18. Peiming Wang & Iain Cockburn & Martin L. Puterman, "undated". "A Mixed Poisson Regression Model for Analysis of Patent Data," Computing in Economics and Finance 1996 _049, Society for Computational Economics.
    19. Butler, J S & Moffitt, Robert, 1982. "A Computationally Efficient Quadrature Procedure for the One-Factor Multinomial Probit Model," Econometrica, Econometric Society, vol. 50(3), pages 761-764, May.
    20. Gary King, 1989. "A Seemingly Unrelated Poisson Regression Model," Sociological Methods & Research, , vol. 17(3), pages 235-255, February.
    21. Lancaster, Tony, 2000. "The incidental parameter problem since 1948," Journal of Econometrics, Elsevier, vol. 95(2), pages 391-413, April.
    22. Yen, Steven & Adamowicz, Wiktor L., 1994. "Participation, Trip Frequency and Site Choice: A Multinomial-Poisson Hurdle Model of Recreation Demand," Staff General Research Papers Archive 764, Iowa State University, Department of Economics.
    23. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    24. Cameron, A. Colin & Trivedi, Pravin K., 1990. "Regression-based tests for overdispersion in the Poisson model," Journal of Econometrics, Elsevier, vol. 46(3), pages 347-364, December.
    25. William H. Greene, 1994. "Accounting for Excess Zeros and Sample Selection in Poisson and Negative Binomial Regression Models," Working Papers 94-10, New York University, Leonard N. Stern School of Business, Department of Economics.
    26. William H. Greene, 1992. "A Statistical Model for Credit Scoring," Working Papers 92-29, New York University, Leonard N. Stern School of Business, Department of Economics.
    27. Krinsky, Itzhak & Robb, A Leslie, 1986. "On Approximating the Statistical Properties of Elasticities," The Review of Economics and Statistics, MIT Press, vol. 68(4), pages 715-719, November.
    28. Daniel B. Hall, 2000. "Zero-Inflated Poisson and Binomial Regression with Random Effects: A Case Study," Biometrics, The International Biometric Society, vol. 56(4), pages 1030-1039, December.
    29. Winkelmann, Rainer & Zimmermann, Klaus F., 1991. "A new approach for modeling economic count data," Economics Letters, Elsevier, vol. 37(2), pages 139-143, October.
    30. William H. Greene & Mark N. Harris & Bruce Hollingworth & Pushkar Maitra, 2008. "A Bivariate Latent Class Correlated Generalized Ordered Probit Model with an Application to Modeling Observed Obesity Levels," Working Papers 08-18, New York University, Leonard N. Stern School of Business, Department of Economics.
    31. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    32. Weiren Wang & Felix Famoye, 1997. "Modeling household fertility decisions with generalized Poisson regression," Journal of Population Economics, Springer;European Society for Population Economics, vol. 10(3), pages 273-283.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William Greene, 2009. "Models for count data with endogenous participation," Empirical Economics, Springer, vol. 36(1), pages 133-173, February.
    2. William Greene, 2007. "Discrete Choice Modeling," Working Papers 07-6, New York University, Leonard N. Stern School of Business, Department of Economics.
    3. William Greene, 2007. "Correlation in Bivariate Poisson Regression Model," Working Papers 07-14, New York University, Leonard N. Stern School of Business, Department of Economics.
    4. Greene, William, 2008. "Functional forms for the negative binomial model for count data," Economics Letters, Elsevier, vol. 99(3), pages 585-590, June.
    5. William H. Greene & David A. Hensher, 2008. "Modeling Ordered Choices: A Primer and Recent Developments," Working Papers 08-26, New York University, Leonard N. Stern School of Business, Department of Economics.
    6. Niklas Elert, 2014. "What determines entry? Evidence from Sweden," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(1), pages 55-92, August.
    7. William Greene, 2007. "Fixed and Random Effects Models for Count Data," Working Papers 07-15, New York University, Leonard N. Stern School of Business, Department of Economics.
    8. Canan GÜNEŞ & Mustafa ÜNLÜ & Yasin BÜYÜKKÖR & Şenay ÜÇDOĞRUK BİRECİKLİ, 2016. "Türkiye’de Sağlık Hizmetleri Talebinin Sayma Veri Modelleriyle İncelenmesi: İçsellik Sorunu," Sosyoekonomi Journal, Sosyoekonomi Society, issue 24(30).
    9. William Greene, 2014. "Models for ordered choices," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 15, pages 333-362, Edward Elgar Publishing.
    10. Óscar Lourenço & Carlota Quintal & Pedro Lopes Ferreira & Pedro Pita Barros, 2007. "A equidade na utilização de cuidados de saúde em Portugal: Uma avaliação baseada em modelos de contagem," Notas Económicas, Faculty of Economics, University of Coimbra, issue 25, pages 6-26, June.
    11. Christopher J. W. Zorn, 1998. "An Analytic and Empirical Examination of Zero-Inflated and Hurdle Poisson Specifications," Sociological Methods & Research, , vol. 26(3), pages 368-400, February.
    12. Massimiliano Bratti & Alfonso Miranda, 2010. "Endogenous Treatment Effects for Count Data Models with Sample Selection or Endogenous Participation," DoQSS Working Papers 10-05, Quantitative Social Science - UCL Social Research Institute, University College London, revised 10 Dec 2010.
    13. Eduardo Fé & Richard Hofler, 2013. "Count data stochastic frontier models, with an application to the patents–R&D relationship," Journal of Productivity Analysis, Springer, vol. 39(3), pages 271-284, June.
    14. Martijn Burger & Frank van Oort & Gert-Jan Linders, 2009. "On the Specification of the Gravity Model of Trade: Zeros, Excess Zeros and Zero-inflated Estimation," Spatial Economic Analysis, Taylor & Francis Journals, vol. 4(2), pages 167-190.
    15. Dahen, Hela & Dionne, Georges, 2010. "Scaling models for the severity and frequency of external operational loss data," Journal of Banking & Finance, Elsevier, vol. 34(7), pages 1484-1496, July.
    16. L. Elbakidze & Y. H. Jin, 2015. "Are Economic Development and Education Improvement Associated with Participation in Transnational Terrorism?," Risk Analysis, John Wiley & Sons, vol. 35(8), pages 1520-1535, August.
    17. William Greene, 2010. "A stochastic frontier model with correction for sample selection," Journal of Productivity Analysis, Springer, vol. 34(1), pages 15-24, August.
    18. Leila Tahmooresnejad & Catherine Beaudry & Andrea Schiffauerova, 2015. "The role of public funding in nanotechnology scientific production: Where Canada stands in comparison to the United States," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 753-787, January.
    19. Alfonso Miranda, 2003. "Socio-economic characteristics, completed fertility, and the transition from low to high order parities in Mexico," Labor and Demography 0308001, University Library of Munich, Germany.
    20. Alfonso Miranda, 2010. "A double-hurdle count model for completed fertility data from the developing world," DoQSS Working Papers 10-01, Quantitative Social Science - UCL Social Research Institute, University College London.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ste:nystbu:07-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Amanda Murphy (email available below). General contact details of provider: https://edirc.repec.org/data/ednyuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.