Enhancing citation recommendation using citation network embedding
Author
Abstract
Suggested Citation
DOI: 10.1007/s11192-021-04196-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Vibhav Singh & Surabhi Verma & Sushil S. Chaurasia, 2020. "Mapping the themes and intellectual structure of corporate university: co-citation and cluster analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1275-1302, March.
- Khalid Haruna & Maizatul Akmar Ismail & Atika Qazi & Habeebah Adamu Kakudi & Mohammed Hassan & Sanah Abdullahi Muaz & Haruna Chiroma, 2020. "Research paper recommender system based on public contextual metadata," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 101-114, October.
- Chanwoo Jeong & Sion Jang & Eunjeong Park & Sungchul Choi, 2020. "A context-aware citation recommendation model with BERT and graph convolutional networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 1907-1922, September.
- Zehra Taşkın & Umut Al, 2018. "A content-based citation analysis study based on text categorization," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(1), pages 335-357, January.
- Xi Chen & Huan-jing Zhao & Shu Zhao & Jie Chen & Yan-ping Zhang, 2019. "Citation recommendation based on citation tendency," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 937-956, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tayyaba Kanwal & Tehmina Amjad, 2024. "Research paper recommendation system based on multiple features from citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(9), pages 5493-5531, September.
- Xiaojuan Zhang & Shuqi Song & Yuping Xiong, 2024. "Personalized global citation recommendation with diversification awareness," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 3625-3657, July.
- Wei Cheng & Dejun Zheng & Shaoxiong Fu & Jingfeng Cui, 2024. "Closer in time and higher correlation: disclosing the relationship between citation similarity and citation interval," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4495-4512, July.
- Xiang Li & Chengli Zhao & Zhaolong Hu & Caixia Yu & Xiaojun Duan, 2022. "Revealing the character of journals in higher-order citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6315-6338, November.
- Shicheng Tan & Tao Zhang & Shu Zhao & Yanping Zhang, 2023. "Self-supervised scientific document recommendation based on contrastive learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5027-5049, September.
- Chien-chih Huang & Kuang-hua Chen, 2024. "RefCit2vec: embedding models considering references and citations for measuring document similarity," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(8), pages 4669-4693, August.
- Yonghe Lu & Meilu Yuan & Jiaxin Liu & Minghong Chen, 2023. "Research on semantic representation and citation recommendation of scientific papers with multiple semantics fusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1367-1393, February.
- Orzechowski, Kamil P. & Mrowinski, Maciej J. & Fronczak, Agata & Fronczak, Piotr, 2023. "Asymmetry of social interactions and its role in link predictability: The case of coauthorship networks," Journal of Informetrics, Elsevier, vol. 17(2).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kaiwen Shi & Kan Liu & Xinyan He, 2024. "Heterogeneous hypergraph learning for literature retrieval based on citation intents," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4167-4188, July.
- Jialiang Lin & Yao Yu & Jiaxin Song & Xiaodong Shi, 2022. "Detecting and analyzing missing citations to published scientific entities," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2395-2412, May.
- Yonghe Lu & Meilu Yuan & Jiaxin Liu & Minghong Chen, 2023. "Research on semantic representation and citation recommendation of scientific papers with multiple semantics fusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1367-1393, February.
- Tianshuang Qiu & Chuanming Yu & Yunci Zhong & Lu An & Gang Li, 2021. "A scientific citation recommendation model integrating network and text representations," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 9199-9221, November.
- Xiaojuan Zhang & Shuqi Song & Yuping Xiong, 2024. "Personalized global citation recommendation with diversification awareness," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 3625-3657, July.
- Chaker Jebari & Enrique Herrera-Viedma & Manuel Jesus Cobo, 2023. "Context-aware citation recommendation of scientific papers: comparative study, gaps and trends," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4243-4268, August.
- Lu Huang & Xiang Chen & Yi Zhang & Changtian Wang & Xiaoli Cao & Jiarun Liu, 2022. "Identification of topic evolution: network analytics with piecewise linear representation and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5353-5383, September.
- Mingyang Wang & Jiaqi Zhang & Shijia Jiao & Xiangrong Zhang & Na Zhu & Guangsheng Chen, 2020. "Important citation identification by exploiting the syntactic and contextual information of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2109-2129, December.
- Antonina Dattolo & Marco Corbatto, 2022. "Assisting researchers in bibliographic tasks: A new usable, real‐time tool for analyzing bibliographies," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(6), pages 757-776, June.
- Dongqing Lyu & Xuanmin Ruan & Juan Xie & Ying Cheng, 2021. "The classification of citing motivations: a meta-synthesis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3243-3264, April.
- Diego Kozlowski & Jennifer Dusdal & Jun Pang & Andreas Zilian, 2021. "Semantic and relational spaces in science of science: deep learning models for article vectorisation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5881-5910, July.
- Verma, Surabhi & Gustafsson, Anders, 2020. "Investigating the emerging COVID-19 research trends in the field of business and management: A bibliometric analysis approach," Journal of Business Research, Elsevier, vol. 118(C), pages 253-261.
- Khalid Haruna & Maizatul Akmar Ismail & Atika Qazi & Habeebah Adamu Kakudi & Mohammed Hassan & Sanah Abdullahi Muaz & Haruna Chiroma, 2020. "Research paper recommender system based on public contextual metadata," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 101-114, October.
- Choi, Seokkyu & Lee, Hyeonju & Park, Eunjeong & Choi, Sungchul, 2022. "Deep learning for patent landscaping using transformer and graph embedding," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
- Heng Huang & Donghua Zhu & Xuefeng Wang, 2022. "Evaluating scientific impact of publications: combining citation polarity and purpose," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5257-5281, September.
- Bettina Minder & Patricia Wolf & Matthias Baldauf & Surabhi Verma, 2023. "Voice assistants in private households: a conceptual framework for future research in an interdisciplinary field," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-18, December.
- Busra Yiğit & Bünyamin Yasin Çakmak, 2024. "Discovering Psychological Well-Being: A Bibliometric Review," Journal of Happiness Studies, Springer, vol. 25(5), pages 1-24, June.
- Khlystova, Olena & Kalyuzhnova, Yelena & Belitski, Maksim, 2022. "The impact of the COVID-19 pandemic on the creative industries: A literature review and future research agenda," Journal of Business Research, Elsevier, vol. 139(C), pages 1192-1210.
- Kai Nishikawa, 2023. "How and why are citations between disciplines made? A citation context analysis focusing on natural sciences and social sciences and humanities," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 2975-2997, May.
- Hei-Chia Wang & Jen-Wei Cheng & Che-Tsung Yang, 2022. "SentCite: a sentence-level citation recommender based on the salient similarity among multiple segments," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2521-2546, May.
More about this item
Keywords
Citation recommendation; Knowledge graph embedding; Convolutional neural networks; Graph representation learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:127:y:2022:i:1:d:10.1007_s11192-021-04196-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.