IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v125y2020i1d10.1007_s11192-020-03642-y.html
   My bibliography  Save this article

Research paper recommender system based on public contextual metadata

Author

Listed:
  • Khalid Haruna

    (Bayero University)

  • Maizatul Akmar Ismail

    (University of Malaya)

  • Atika Qazi

    (Universiti Brunei Darussalam)

  • Habeebah Adamu Kakudi

    (Bayero University)

  • Mohammed Hassan

    (Bayero University)

  • Sanah Abdullahi Muaz

    (Bayero University)

  • Haruna Chiroma

    (National Yunlin University of Science and Technology)

Abstract

Due to the exponential increase in research papers on a daily basis, finding and accessing related academic documents over the Internet is monotonous. One of the leading approaches was the use of recommendation systems to proactively recommend scholarly papers to individual researchers. The primary drawback to these methods, however, is that their success depends on user profile information and is therefore unable to provide useful suggestions to the new user. In addition, both the public and the non-public used descriptive metadata are used. The scope of the recommendation is therefore limited to a number of documents which are either publicly available or which are granted copyright permits. In alleviating the above problems, we proposed an alternative approach using public contextual metadata for an independent framework that customizes scholarly papers, regardless of the research field and user expertise. Experimental tests have shown significant improvements over other baseline methods.

Suggested Citation

  • Khalid Haruna & Maizatul Akmar Ismail & Atika Qazi & Habeebah Adamu Kakudi & Mohammed Hassan & Sanah Abdullahi Muaz & Haruna Chiroma, 2020. "Research paper recommender system based on public contextual metadata," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 101-114, October.
  • Handle: RePEc:spr:scient:v:125:y:2020:i:1:d:10.1007_s11192-020-03642-y
    DOI: 10.1007/s11192-020-03642-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03642-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03642-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khalid Haruna & Maizatul Akmar Ismail & Damiasih Damiasih & Joko Sutopo & Tutut Herawan, 2017. "A collaborative approach for research paper recommender system," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-17, October.
    2. Chanwoo Jeong & Sion Jang & Eunjeong Park & Sungchul Choi, 2020. "A context-aware citation recommendation model with BERT and graph convolutional networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 1907-1922, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianshuang Qiu & Chuanming Yu & Yunci Zhong & Lu An & Gang Li, 2021. "A scientific citation recommendation model integrating network and text representations," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 9199-9221, November.
    2. Chanathip Pornprasit & Xin Liu & Pattararat Kiattipadungkul & Natthawut Kertkeidkachorn & Kyoung-Sook Kim & Thanapon Noraset & Saeed-Ul Hassan & Suppawong Tuarob, 2022. "Enhancing citation recommendation using citation network embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 233-264, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chanathip Pornprasit & Xin Liu & Pattararat Kiattipadungkul & Natthawut Kertkeidkachorn & Kyoung-Sook Kim & Thanapon Noraset & Saeed-Ul Hassan & Suppawong Tuarob, 2022. "Enhancing citation recommendation using citation network embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 233-264, January.
    2. Lu Huang & Xiang Chen & Yi Zhang & Changtian Wang & Xiaoli Cao & Jiarun Liu, 2022. "Identification of topic evolution: network analytics with piecewise linear representation and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5353-5383, September.
    3. Antonina Dattolo & Marco Corbatto, 2022. "Assisting researchers in bibliographic tasks: A new usable, real‐time tool for analyzing bibliographies," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(6), pages 757-776, June.
    4. Diego Kozlowski & Jennifer Dusdal & Jun Pang & Andreas Zilian, 2021. "Semantic and relational spaces in science of science: deep learning models for article vectorisation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5881-5910, July.
    5. Choi, Seokkyu & Lee, Hyeonju & Park, Eunjeong & Choi, Sungchul, 2022. "Deep learning for patent landscaping using transformer and graph embedding," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    6. Jialiang Lin & Yao Yu & Jiaxin Song & Xiaodong Shi, 2022. "Detecting and analyzing missing citations to published scientific entities," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2395-2412, May.
    7. Zara Nasar & Syed Waqar Jaffry & Muhammad Kamran Malik, 2018. "Information extraction from scientific articles: a survey," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1931-1990, December.
    8. Hei-Chia Wang & Jen-Wei Cheng & Che-Tsung Yang, 2022. "SentCite: a sentence-level citation recommender based on the salient similarity among multiple segments," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2521-2546, May.
    9. Yonghe Lu & Meilu Yuan & Jiaxin Liu & Minghong Chen, 2023. "Research on semantic representation and citation recommendation of scientific papers with multiple semantics fusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1367-1393, February.
    10. Tianshuang Qiu & Chuanming Yu & Yunci Zhong & Lu An & Gang Li, 2021. "A scientific citation recommendation model integrating network and text representations," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 9199-9221, November.
    11. Jaewoong Choi & Jiho Lee & Janghyeok Yoon & Sion Jang & Jaeyoung Kim & Sungchul Choi, 2022. "A two-stage deep learning-based system for patent citation recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6615-6636, November.
    12. Lu Huang & Xiang Chen & Yi Zhang & Yihe Zhu & Suyi Li & Xingxing Ni, 2021. "Dynamic network analytics for recommending scientific collaborators," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 8789-8814, November.
    13. Moreno La Quatra & Luca Cagliero & Elena Baralis, 2021. "Leveraging full-text article exploration for citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8275-8293, October.
    14. Chaker Jebari & Enrique Herrera-Viedma & Manuel Jesus Cobo, 2023. "Context-aware citation recommendation of scientific papers: comparative study, gaps and trends," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4243-4268, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:125:y:2020:i:1:d:10.1007_s11192-020-03642-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.