IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v129y2024i7d10.1007_s11192-024-05066-4.html
   My bibliography  Save this article

Heterogeneous hypergraph learning for literature retrieval based on citation intents

Author

Listed:
  • Kaiwen Shi

    (Zhongnan University of Economics and Law)

  • Kan Liu

    (Zhongnan University of Economics and Law)

  • Xinyan He

    (Zhongnan University of Economics and Law)

Abstract

Literature retrieval helps scientists find previous work that is relative to their own research or even get new research ideas. However, the discrepancy between retrieval results and the ultimate intention of citation is neglected by most literature retrieval models. Citation intent refers to the researcher’s motivation for citing a paper. A citation intent graph with homogeneous nodes and heterogeneous hyperedges can represent different types of citation intents. By leveraging the citation intent information included in a hypergraph, a retrieval model can guide researchers on where to cite its retrieval result by understanding the citation behaviour in the graph. We present a ranking model called CitenGL (Citation Intent Graph Learning) that aims to extract citation intent information and textual matching signals. The proposed model consists of a heterogeneous hypergraph encoder and a lightweight deep fusion unit for efficiency trade-offs. Compared to traditional literature retrieval, our model fills the gap between retrieval results and citation intention and yields an understandable graph-structured output. We evaluated our model on publicly available full-text paper datasets. Experimental results show that CitenGL outperforms most existing neural ranking models that only consider textual information, which illustrates the effectiveness of integrating citation intent information with textual information. Further ablation analyses show how citation intent information complements text-matching signals and citation networks.

Suggested Citation

  • Kaiwen Shi & Kan Liu & Xinyan He, 2024. "Heterogeneous hypergraph learning for literature retrieval based on citation intents," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4167-4188, July.
  • Handle: RePEc:spr:scient:v:129:y:2024:i:7:d:10.1007_s11192-024-05066-4
    DOI: 10.1007/s11192-024-05066-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-024-05066-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-024-05066-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:129:y:2024:i:7:d:10.1007_s11192-024-05066-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.