IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v17y2023i2s1751157723000305.html
   My bibliography  Save this article

Asymmetry of social interactions and its role in link predictability: The case of coauthorship networks

Author

Listed:
  • Orzechowski, Kamil P.
  • Mrowinski, Maciej J.
  • Fronczak, Agata
  • Fronczak, Piotr

Abstract

The paper provides important insights into understanding the factors that influence tie strength in social networks. Using local network measures that take into account asymmetry of social interactions we show that the observed tie strength is a kind of compromise, which depends on the relative strength of the tie as seen from its both ends. This statement is supported by the Granovetter-like, strongly positive weight-topology correlations, in the form of a power-law relationship between the asymmetric tie strength and asymmetric neighbourhood overlap, observed in three different real coauthorship networks and in a synthetic model of scientific collaboration. This observation is juxtaposed against the current misconception that coauthorship networks, being the proxy of scientific collaboration networks, contradict the Granovetter’s strength of weak ties hypothesis, and the reasons for this misconception are explained. Finally, by testing various link similarity scores, it is shown that taking into account the asymmetry of social ties can remarkably increase the efficiency of link prediction methods. The perspective outlined also allows us to comment on the surprisingly high performance of the resource allocation index – one of the most recognizable and effective local similarity scores – which can be rationalized by the strong triadic closure property, assuming that the property takes into account the asymmetry of social ties.

Suggested Citation

  • Orzechowski, Kamil P. & Mrowinski, Maciej J. & Fronczak, Agata & Fronczak, Piotr, 2023. "Asymmetry of social interactions and its role in link predictability: The case of coauthorship networks," Journal of Informetrics, Elsevier, vol. 17(2).
  • Handle: RePEc:eee:infome:v:17:y:2023:i:2:s1751157723000305
    DOI: 10.1016/j.joi.2023.101405
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157723000305
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2023.101405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jim Giles, 2012. "Computational social science: Making the links," Nature, Nature, vol. 488(7412), pages 448-450, August.
    2. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    3. Yi Bu & Ying Ding & Xingkun Liang & Dakota S. Murray, 2018. "Understanding persistent scientific collaboration," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(3), pages 438-448, March.
    4. Aaron Clauset & Cristopher Moore & M. E. J. Newman, 2008. "Hierarchical structure and the prediction of missing links in networks," Nature, Nature, vol. 453(7191), pages 98-101, May.
    5. Wang, Xiaojie & Zhang, Xue & Zhao, Chengli & Xie, Zheng & Zhang, Shengjun & Yi, Dongyun, 2015. "Predicting link directions using local directed path," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 260-267.
    6. Chenwei Zhang & Yi Bu & Ying Ding & Jian Xu, 2018. "Understanding scientific collaboration: Homophily, transitivity, and preferential attachment," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(1), pages 72-86, January.
    7. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    8. Jinseok Kim & Jana Diesner, 2015. "Coauthorship networks: A directed network approach considering the order and number of coauthors," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(12), pages 2685-2696, December.
    9. Behrouzi, Saman & Shafaeipour Sarmoor, Zahra & Hajsadeghi, Khosrow & Kavousi, Kaveh, 2020. "Predicting scientific research trends based on link prediction in keyword networks," Journal of Informetrics, Elsevier, vol. 14(4).
    10. Xie, Zheng, 2020. "Predicting the number of coauthors for researchers: A learning model," Journal of Informetrics, Elsevier, vol. 14(2).
    11. Qian-Ming Zhang & Linyuan Lü & Wen-Qiang Wang & Yu-Xiao & Tao Zhou, 2013. "Potential Theory for Directed Networks," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-8, February.
    12. Raf Guns & Ronald Rousseau, 2014. "Recommending research collaborations using link prediction and random forest classifiers," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1461-1473, November.
    13. Yin, Hao & Benson, Austin R. & Ugander, Johan, 2020. "Measuring directed triadic closure with closure coefficients," Network Science, Cambridge University Press, vol. 8(4), pages 551-573, December.
    14. Xie, Zheng & Ouyang, Zhenzheng & Li, Jianping, 2016. "A geometric graph model for coauthorship networks," Journal of Informetrics, Elsevier, vol. 10(1), pages 299-311.
    15. Tao Zhou & Linyuan Lü & Yi-Cheng Zhang, 2009. "Predicting missing links via local information," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 623-630, October.
    16. Mark-Christoph Müller & Florian Reitz & Nicolas Roy, 2017. "Data sets for author name disambiguation: an empirical analysis and a new resource," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1467-1500, June.
    17. Zhiya Zuo & Kang Zhao, 2021. "Understanding and predicting future research impact at different career stages—A social network perspective," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(4), pages 454-472, April.
    18. Chanathip Pornprasit & Xin Liu & Pattararat Kiattipadungkul & Natthawut Kertkeidkachorn & Kyoung-Sook Kim & Thanapon Noraset & Saeed-Ul Hassan & Suppawong Tuarob, 2022. "Enhancing citation recommendation using citation network embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 233-264, January.
    19. Bütün, Ertan & Kaya, Mehmet, 2019. "A pattern based supervised link prediction in directed complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1136-1145.
    20. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Ajay & Singh, Shashank Sheshar & Singh, Kuldeep & Biswas, Bhaskar, 2020. "Link prediction techniques, applications, and performance: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    2. Wang, Zuxi & Wu, Yao & Li, Qingguang & Jin, Fengdong & Xiong, Wei, 2016. "Link prediction based on hyperbolic mapping with community structure for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 609-623.
    3. Peng Liu & Liang Gui & Huirong Wang & Muhammad Riaz, 2022. "A Two-Stage Deep-Learning Model for Link Prediction Based on Network Structure and Node Attributes," Sustainability, MDPI, vol. 14(23), pages 1-15, December.
    4. Chi, Kuo & Qu, Hui & Yin, Guisheng, 2022. "Link prediction for existing links in dynamic networks based on the attraction force," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    5. Zheng Xie, 2021. "A distributed hypergraph model for simulating the evolution of large coauthorship networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 4609-4638, June.
    6. Wang, Xiaojie & Zhang, Xue & Zhao, Chengli & Xie, Zheng & Zhang, Shengjun & Yi, Dongyun, 2015. "Predicting link directions using local directed path," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 260-267.
    7. Park, Ji Hwan & Chang, Woojin & Song, Jae Wook, 2020. "Link prediction in the Granger causality network of the global currency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    8. Wang, Jun & Zhang, Qian-Ming & Zhou, Tao, 2019. "Tag-aware link prediction algorithm in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 105-111.
    9. Sherkat, Ehsan & Rahgozar, Maseud & Asadpour, Masoud, 2015. "Structural link prediction based on ant colony approach in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 80-94.
    10. Huang, Lu & Chen, Xiang & Ni, Xingxing & Liu, Jiarun & Cao, Xiaoli & Wang, Changtian, 2021. "Tracking the dynamics of co-word networks for emerging topic identification," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    11. Liu, Yangyang & Zhao, Chengli & Wang, Xiaojie & Huang, Qiangjuan & Zhang, Xue & Yi, Dongyun, 2016. "The degree-related clustering coefficient and its application to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 24-33.
    12. Tofighy, Sajjad & Charkari, Nasrollah Moghadam & Ghaderi, Foad, 2022. "Link prediction in multiplex networks using intralayer probabilistic distance and interlayer co-evolving factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    13. Pei, Panpan & Liu, Bo & Jiao, Licheng, 2017. "Link prediction in complex networks based on an information allocation index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 1-11.
    14. Liu, Chuang & Zhou, Wei-Xing, 2012. "Heterogeneity in initial resource configurations improves a network-based hybrid recommendation algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5704-5711.
    15. Shenshen Bai & Longjie Li & Jianjun Cheng & Shijin Xu & Xiaoyun Chen, 2018. "Predicting Missing Links Based on a New Triangle Structure," Complexity, Hindawi, vol. 2018, pages 1-11, December.
    16. Xia, Yongxiang & Pang, Wenbo & Zhang, Xuejun, 2021. "Mining relationships between performance of link prediction algorithms and network structure," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    17. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    18. Behrouzi, Saman & Shafaeipour Sarmoor, Zahra & Hajsadeghi, Khosrow & Kavousi, Kaveh, 2020. "Predicting scientific research trends based on link prediction in keyword networks," Journal of Informetrics, Elsevier, vol. 14(4).
    19. Zhang, Xue & Wang, Xiaojie & Zhao, Chengli & Yi, Dongyun & Xie, Zheng, 2014. "Degree-corrected stochastic block models and reliability in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 553-559.
    20. Zhou, Tao & Lee, Yan-Li & Wang, Guannan, 2021. "Experimental analyses on 2-hop-based and 3-hop-based link prediction algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:17:y:2023:i:2:s1751157723000305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.